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GENERALIZED WEIGHTED SOBOLEV-MORREY
ESTIMATES FOR HYPOELLIPTIC OPERATORS
WITH DRIFT ON HOMOGENEOUS GROUPS

VAGIF S. GULIYEV

(Communicated by J. Pecari¢)

Abstract. Let G = (]RN ,o,éx) be a homogeneous group, Q be the homogeneous dimension
of G, Xo,Xi,...,X;n be left invariant real vector fields on G and satisfy Hormander’s rank
condition on RY. Assume that Xi,...,X, (m <N —1) are homogeneous of degree one and
Xo is homogeneous of degree two with respect to the family of dilations (51) 150 Consider the
following hypoelliptic operator with drift on G

m
L = 2 a,-jX,-Xj+a0X0,
=1

where (q;;) is a constant matrix satisfying the elliptic condition in R” and ag # 0. In this
paper, for this class of operators we obtain generalized weighted Sobolev-Morrey estimates by
establishing boundedness of a large class of sublinear operators Ty, o € [0,Q) generated by
Calderén-Zygmund operators (¢ = 0) and generated by fractional integral operator (¢ > 0) on
generalized weighted Morrey spaces and proving interpolation results in generalized weighted
Sobolev-Morrey spaces on G.

1. Introduction and statement of main results

Let G = (R",0,8;) be ahomogeneous group on RY and Xo,Xi,..., X, (m<N)
be left invariant real vector fields on G. Assume that X1, ...,X,, are §; -homogeneous
of degree one and Xj is 0, -homogeneous of degree two with respect to the family of
dilations (&), ., and satisfying Hormander’s condition

rankL(Xo, X1, .., Xm)(x) =N, x€G, (1.1)

where L(Xy,X1,...,X) denotes the Lie algebra generated by Xo, Xy, ..., X,,.
Our aim is to check generalized weighted Sobolev-Morrey estimates of the hy-
poelliptic operator with drift

m
£ =Y a;XiX;j+ aoXo, (1.2)
i,j=1
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where ag # 0, (a; j)T/:l is a constant coefficient matrix satisfying that for some p >0,

uEP < Y @& < ulEl?, EeR™
ij=1

The operator £ has been studied extensively by many authors. Hormander in
[30] pointed out that (1.1) implies the hypoellipticity of (1.2). In [15], Folland proved
that homogeneous hypoelliptic operators on nilpotent groups possess homogeneous
fundamental solutions. For the further properties of the fundamental solutions, see
Bramanti and Brandolini [6]. In the papers [6, 28, 32, 52] a priori estimates for the
operator .# are considered. The operator . contains many particular cases. When
Xo= Y bi,-x,-ax, — 0, Xi=0y, i=1,2,...,m, £ is a Kolmogorov-Fokker-Planck

ij=1 '
ultraparabolic operator of the kind

m n
2
Lu= E a,-ﬂxix/.u—i- E b,-jxlﬁxju—&u,

ij=1 ij=1

where (x,¢) € R*™"!, (aij)i";—, is a positive definite matrix, (b;;)};_; is a constant
coefficient matrix with a suitable upper triangular structure. It is clear that %) is a heat
operator, when m =n, (bij)?,jzl = (0)?7./:1 . For more details see [38, 39, 54, 55].

The classical Morrey space was first introduced by Morrey [4 1] to study the partial
differential equations, which characterized the regularity of the solutions to the second
order elliptic partial differential equations. Since then, many studies have been focused
on Morrey spaces; see, for instance, [1, 2, 12] and the references therein. In [1, 12]
the authors showed the boundedness in Morrey spaces for some important operators
in harmonic analysis such as Hardy-Littlewood operators, Calderén-Zygmund singular
integral operators and fractional integral operators. Moreover, various Morrey spaces
are defined in the process of study. The author, Mizuhara and Nakai [17, 42, 47] intro-
duced generalized Morrey spaces M), o(R") (see, also [18, 19, 22, 56]). Komori and
Shirai [36] defined weighted Morrey spaces L (w). In [20] the author gave a con-
cept of the generalized weighted Morrey spaces M), o(R",w) which could be viewed
as extension of both M), »(R") and L, (w). In [20], the boundedness of the clas-
sical operators and their commutators in spaces M, ,(R",w) was studied, see also
[24, 25, 29, 35, 48, 49, 50, 51].

In this paper motivated by these articles, we will establish the boundedness of sub-
linear integral operators on generalized weighted Morrey spaces in the framework of
homogeneous groups. The class of sublinear operators under consideration contains in-
tegral operators of harmonic analysis such as Hardy-Littlewood and fractional maximal
operators, Calder6n-Zygmund operators, potential operators on homogeneous groups,
etc. Homogeneous groups include the Euclidean space, the Heisenberg group, and
the Carnot groups, see [5, 11, 16]. Furthermore, we give applications to generalized
weighted Sobolev - Morrey estimates for hypoelliptic operators with drift on homoge-
neous groups. Also, we obtain generalized weighted Morrey estimates for the sublinear
operators generated by fractional integral operators on the homogeneous group and an
application.
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Let us state the following three main results of the paper.

THEOREM 1.1. (Generalized weighted Sobolev-Morrey estimate) Let 1 < p <
o, 0>4, we A,(G) and @ satisfy the condition

. L
 ess inf@(x,s) w(B(x,s))? .

[ == : L <o), (13)
r w(B(x,1))? !

Letalso u € S5 o(G,w) OS(I)_I,(G,W). Then there exists a constant C > 0 such that

Il g < C(1Llnty g0+ litlagy g0 ) (1.4)

where Ap(G) is Muckenhoupt class,

m
lulls, ,@w) = lullL,@mw + 21 1 Xiul| £, (G )

=

lulls, , (@) = [4ll31, (@) + 20 1Xittllat, (@) T 2 (1XiXjttllaty (G + 1 X0t la1, (@) -
i-1 i=1

The space S (G, w) ﬁS(l)_p(((Lw) consists of all functions u € S ,(G,w) ﬁS(l)_p(G,w)
with D*u € M, (G, w), and is endowed by the same norm (see Definition 2.2). Recall
that S (G, w) is the closure of C5 (G) with respect to the norm in S1,,(G,w).

REMARK 1.1. For ¢ € 4} (see Remark 2.2) the condition (1.3) stays the follow-
ing form

/N@dzg o(r). (1.5)

COROLLARY 1.1. Let 1 <p <o, 0 >4, we Ap(G) and ¢ € 4% satisfy the
condition (1.5). If u € S  »(G,w) ﬁS?7p(G,w), then inequality (1.4) is valid.

COROLLARY 1.2. (Weighted Sobolev-Morrey estimate) [31] If 1 < p < oo, O >
4, weAy, and 0 <k <1.Ifu €S, (G,w)NSY »(G,w), then there exists a constant
C > 0 such that

el i) < C (1Ll w0 + 1l 6. )

where

[ulls,, Gy = |z, (@) + 21 1 Xiutl| £, (@) .ZI 1XiXjttl| 2, (@) + 1 Xou| L, (@)
i= ij=
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THEOREM 1.2. (Higher order generalized weighted Sobolev-Morrey estimate)
Let 1 <p<oeo, Q>4, weAy(G) and @ satisfy the condition (1.3). If k is a positive
integer and u € Sy p o(G,w) OS(I)_I,((G,W), then there exists a constant C > 0 such that

il i) < € (1Ll 55, o600+ Nl 0 ) (1.6)

where ||u||S2k5p,<p(Gaw) =Yk, |Dhu||Mp><p(G7W) (see Definition 2.2),

h
10" ull sty (@) = 2K+ Xjatal 11, (@)

where Xji...Xj is homogeneous of degree h (let us note that Xo is homogeneous of
degree two while the remaining X1, ...,X,, are homogeneous of degree one).

COROLLARY 1.3. Let 1 <p <oo, Q>4, weA,(G), k beapositive integer and
¢© €94l satisfy the condition (1.5). If u € S2,p,0(G,w) ﬁS(l)_p(G,w), then inequality
(1.6) is valid.

COROLLARY 1.4. (Higher order weighted Sobolev-Morrey estimate) [31] Let
l<p<e, O0>4, weA,, 0<k<1 andk be apositive integer. If u € S» ,, «(G,w) N
S(i »(G,w), then there exists a constant C > 0 such that

0552 (600 < € (1Ll .0 + il ) )

To inspect two theorems, we first prove the boundedness of sublinear operators
generated by Calderén-Zygmund operators 7 in generalized weighted Morrey space
on G by applying the representation formulas of functions. These formulas depend
on the fundamental solution of . Next generalized weighted Sobolev-Morrey in-
terpolations on the first order derivatives and higher order derivatives of vector fields
are derived. Then based on these results, we obtain generalized weighted Sobolev-
Morrey estimates for .#. Instead, we shall apply representation formulas of higher
order derivatives [6] to prove interpolations desired.

THEOREM 1.3. (Generalized weighted Morrey estimate) Let 1 < p < g < oo,
é = % - é, w€EA,q(G), and (Q1,¢2) satisfy the condition

1
w ess inf @y (x,5)w? (B(x,s)) 7 ;.
| == —— 2 S o), (17)
’ wi(B(x,1)) !
Then there exists a constant C > 0 such that for every Lu € My, o, (G,w"), we have
HXiuHMq‘(pz(G,Wq) <C H"gu”Mp‘q;l (G,wP)» i=12,...,m

If in Theorem 1.3 take @; = @ € 45, @(r) = ro(r), then we get the following
new corollary.
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COROLLARY 1.5. Let 1 < p < g < oo, é =
satisfy the condition

, WEAp4(G), and ¢ € 4

=
Q=

[ ewarsrot. (18)
Then there exists a constant C > 0 such that for every Lu € My, o(G,w”), we have

Xty @ our) < ClLollity g Gy 1= 1,20 m.

COROLLARY 1.6. (Morrey estimate with two weights) [31] If 1 < p < g < oo,
1/g=1/p—1/0, we A, 4(G), and 0 < kK < p/q, then there exists a constant C > 0
such that for every Zu € L, (G, wP w?), we have

Xt (o) < CILlly oy i=1,2,.om.

q.Kq/p

The proof uses the extension of generalized weighted Morrey estimates for the
sublinear operators generated by fractional integral operators 7, 0 < o¢ < Q in the
Euclidean space to the homogeneous group and application to .Z .

REMARK 1.2. Note that, in the case w =1 Theorems 1.1, 1.2 and 1.3 was proved

in [27]. Also in the case w =1 and ¢(x,r) = |B(x, r)|KTfl Corollaries 1.2, 1.4 and 1.6
was proved in [52].

Sobolev-Morrey spaces arose in the study of elliptic differential equations. Cam-
panato considered Sobolev-Morrey spaces in [10]. More is investigated on Sobolev-
Morrey spaces [13, 14,23, 26, 31, 52, 54, 55]. The embedding relation can be found in
[45, 46].

It is mentioned that since the second and higher order derivatives of vector fields
are determined by Calderén-Zygmund operators rather than the fractional integral op-
erators, we cannot use the method here to generalize estimates in Theorem 1.3 to the
generalized weighted Sobolev-Morrey estimates for £ .

The plan of the paper is the following. In Section 2, we introduce some knowl-
edge of the homogeneous group G, the fundamental solution for . and the gener-
alized weighted Morrey spaces. Section 3 is devoted to the proof of the boundedness
for sublinear operators generated by Calderén-Zygmund operators 7T in generalized
weighted Morrey spaces. In addition to this, generalized weighted Morrey estimates
for sublinear operators generated by fractional integral operators Ty, 0 < o0 < Q are
given. In Section 4 the generalized weighted Sobolev-Morrey interpolation inequalities
on G are shown. The main results are proved in Section 5.

By A < B we mean that A < CB with some positive constant C independent of
appropriate quantities. If A < B and B < A, we write A =~ B and say that A and B are
equivalent.
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2. Preliminary

We describe first some notions on homogeneous Lie groups. For more details, we
refer to the monograph [5].

Let o be a given group law on R and assume that the map (x,y) — y~
smooth, then RY together with this mapping forms a Lie group.

If there exist 0 < w; < wy <.... < wy, such that the dilations

Loy is

6)L : (xl,...,xN) — (Awlxl,...JLWNxN), A>0

are group automorphisms, then the space RV with this structure is called a homoge-
neous group, denoted by G.
The homogeneous norm on G can be defined as follows. For any x € G\ {0}, set

x| = p & 81/px =1,

where |-| denotes the Euclidean norm, and set ||0|| = 0. For this mapping the following
properties are valid.

L. ||8,x|| = A||x|| forevery x € G and A > 0;

2. there exists ¢y = ¢(G) > 1, such that for every x,y € G,

It < collxll and lxoyl| < co ([l +[Iyl)- 2.1)

In view of these properties, we can define the quasidistance d by d(x,y) = |[xo
y~!{| and define the d-ball by B(x,r) = B,(x) = {y € G :d(x,y) < r}.

Let # = {B(x,r) :x € G,r > 0}. By |E| denote the Lebesgue measure of E.
Note that B(0,r) = 6,B(0,1), therefore

IB(x,r)| = r¢|B(0,1)|, x€G,r>0, (2.2)

where Q =wi+...+wy.

We will call that Q is the homogeneous dimension of G and always require Q > 4
in the sequel to estimate higher order derivatives of vector fields. By (2.2) the doubling
condition on G holds, that is

|B(x,2r)| < c|B(x,r)|, x€G, r>0,

where ¢ is some positive constant, and so (G,dx,d) is a space of homogeneous type.
A differential operator ¥ on G is called homogeneous of degree B (f > 0), if
for every test function ¢,

Y(@(8x) = AP (Y9)(8,%), A >0,x€G;
areal function f on G is called homogeneous of degree o, if
f(&x) =A%f(x), A>0,xeG.

Clearly, if Y is a homogeneous differential operator of degree 8 and f is a ho-
mogeneous function of degree o, then Y f is homogeneous of degree oo — 3.
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LEMMA 2.1. (See [6]) Let £ be a left invariant homogeneous differential oper-
ator of degree 2 on G, then there is a unique fundamental solution T'(-) such that for
every test function u and every x € G,

(a) T() € C°(G\ {0});

(b) T(-) is homogeneous of degree 2 — Q;

(c) ( ) = (ZLuxT)(x) = [ Tlxoy™").Lu(y)dy;

(d) Xiu(x) = fGXF(xoy‘l)-fu(y)dy

Moreover fori,j=1,...,m, there exist constants c; ;j such that

XiXju(x) = V.P./ XX, T(xoy 1) Zu(y)dy + c;;Lu(x).
: o

REMARK 2.1. If we set I'; = X;I', I'; ; = X;X;I", then it is obvious that Ij is
homogeneous of degree 1 — Q and T; is homogeneous of degree —Q.

Forany f € LllOC (G), the Hardy-Littlewood maximal operator on G is defined by
Mf(x / )|dy, ae. xe€G.
( ) r>0 |B X r | B(x,r) ‘

Forany f € L'°°(G), we say that T is a Calderén-Zygmund operator on G if

Tf(x) = lim

o -1 — o —1
SHO/{‘ng;onyflu>g}K(x y ) f(v)dy V.R/{}K(x y )y,

where K satisfies

c

|K(x)|<wv ‘V ()|\ H ||Q+17XGG\{O}

For any f € L!°°(G), the fractional maximal operator M, and the fractional inte-
gral operator I, on G are defined by

Maf(x) = sup Ber)| 6 [ [7(lay, 0< o<,

r>0 B(x,

fO)

I xz/id, O<a<,

Otf( ) G ||)Coy_1||Q_a y Q

respectively. If o« = 0, then M = M) is the Hardy-Littlewood maximal operator.
Suppose that Ty, a € [0,Q) represents a linear or a sublinear operator, which

satisfies, for any f € Ly (R") with compact support and x ¢ suppf, inequality

SO

T <C —
|To.f ()] 1 G ||xoy-1[|2—@

dy, (2.3)
where Cj is independent of f and x.

Note that, the maximal operator M, and the Calderon-Zygmund operator T sat-
isfy the condition (2.3) with oo = 0, and the fractional maximal operator My, and the
fractional integral operator I, satisfy the condition (2.3) with 0 < o < Q.
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Let0<a<Q,1<p< g and f € L,(G). Then the integral I, f(x) converges
absolutely for almost every x € G, see [18, Theorem 3.2.1]. The Hardy-Littlewood-
Sobolev result states that (see [16], [17] and [18, Theorem 3.2.1]) the operator I is
bounded from L,(G) to L,(G) ifandonlyif 1 <p <g<eeand a=0Q/p—Q/q. Also
I, is bounded from L (G) to WL,(G) ifand onlyif 1 < g < e and a =Q—0Q/q.

By a weight function, briefly weight, we mean a locally integrable function on G
which takes values in (0,c0) almost everywhere. For a weight w and a measurable set
E, we define w(E) = [ w(x)dx, and the characteristic function of E by yg. Let B be
aball on G and kB(k > 0) denote the ball with the same center as B whose radius is
A times that of B.

If w is a weight function, we denote by L,(G,w) the weighted Lebesgue space
defined by finiteness of the norm

1
Pty = ([ 1F@Pw0dx)" <o, if 1<p<os

and
[fllzcw) = ess sup [f(xX)w(x), if p=ce.
Xe

We recall a weight function w is in the Muckenhoupt’s class A,(G), 1 < p < oo
[43], if

Wla, = Slllgp[W]A,,(B) Sup<‘B‘/ w(x )dx) (\;‘ / W(x)l_p,dx>p71 e

where the supremum is taken with respect to all balls B and % + # =1. For p=1,
w € A1(G) is defined by the condition Mw(x) < Cw(x) with [w]s, =sup,g Aiw(—)(c’)‘) ,and
for p =0 Au(G) = U1<p<eeAp(G) and [W]eo = infi<pccaW]a, -

A weight function w is in the Muckenhoupt-Wheeden class A, 4(G), 1 < p < eo
[44], if

Wla,, = SUP[W}A,W(B)

wﬂm/(wwﬂﬁgémmmﬁwk%

where the supremum is taken with respect to all balls D and 11—7—1— # =1.While p=1,
weA4(G) with 1 <g <o if

Wla,, := SI;P[W]AL‘,(B)

= sup ( |ll;| / (x)‘fdx> ‘ (es:esBup %) <

Weighted norm inequalities for fractional integral operators arise naturally in har-
monic analysis, and have been extensively studied by several authors. Let 0 < ot < Q,
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1<p< g, oo=0/p—0/q,and w € Apy(G), then the operator I is bounded from
L,(G,wP”) to Ly(G,w?), see [33] and in the Euclidean setting see [37].
We define generalized weighed Morrey spaces as follows.

DEFINITION 2.1. Let 1 < p < o, ¢ be a positive measurable function on G x
(0,00) and w be non-negative measurable function on G. We denote by M, o(G,w)
the generalized weighted Morrey space, the space of all functions f € L;OC(((LW) with
finite norm

_1
Hf”Mp,q;(G,w) = Ssup (P(x7r)7lw(B(x’ r)) P ||fHLp(B(x,r),w)a

xeG,r>0

where || f1|L,B(x.r) ) = 11 X80 L, (Gw) -
Furthermore, by WM, ,(G,w) we denote the weak generalized weighted Morrey
space of all functions f € WL;OC((G,W) for which

1
1 lwaty oo = sup @6, r) " w(BCE, )7 | fllwe, (Bixr)w) <
x€G,r>0

where WL, (B(x,r),w) denotes the weak L, -space of measurable functions f for
which

1

) = oF ) .W:sut/ w(y)dy)”.
17wty toterson = I 2mtellwe e =spt(f o w)y)

EXAMPLE 2.1. (1) If w=1, then M, ,(G,1) = M, »(G) is the generalized
Morrey space and WM, »(G,1) = WM, ,(G) is the weak generalized Morrey space.
K—1
(2) If o(x,r) =w(B(x,r)) 7 , then M, o(G,w) = L, «(G,w) is the weighted
Morrey space and WM, »(G,w) = WL, (G, w) is the weak weighted Morrey space.
K 1
(3) If @(x,r) =v(B(x,r))Pw(B(x,r))” 7, then M) o(G,w) = L, «(G,v,w) is the
two weighted Morrey space.
1-0
(4) f w=1and @(x,r)=r7 with 0<A <Q,then M) o(G,w) =L, ;(G) is
the classical Morrey space and WM, o (G,w) = WL, ; (G) is the weak Morrey space.
1
(5) If @(x,r) =w(B(x,r)) 7, then M, o(G,w) = L,(G,w) is the weighted
Lebesgue space and WM, (G, w) =WL,(G,w) is the weak weighted Lebesgue space.

We use the following simplified notation later:

|1 Dul[p, o(Gw) = 21 1Xiully1,, (@)
i=

m
2
1D ullp,, o (@ w) = _Zl 1XiXjullpy. o (G.0) + 1X0U]| 51, (G )

ij=

and generally,
k
1D ullag, (@) = 2 X Xttt o (G0)

where Xj;...Xj; is homogeneous of degree k (let us note that Xy is homogeneous of
degree two while the remaining X1, ...,X,, are homogeneous of degree one).
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DEFINITION 2.2. For p € [1,), a nonnegative integer k and a weight w, the
weighted Sobolev-Morrey space Si (G, w) consists of all M), ,(G,w) functions such
that

k
sy, p(Gw) = h;) D" 1]l p1,, o)

is finite.
The space Si (G, w) ﬂS?p(G,w) consists of all functions u € S; ,(G,w) N

SY (G, w) with D"u € M, (G, w), and is endowed by the same norm.

REMARK 2.2. For a non-negative measurable function w defined on (0,c0), we
denote by ¥ the set of all almost decreasing functions ¢ : G x (0,00) — (0,0) such
that

inf  @(B) = @(By) forall Bye A

De%’:rggrgo
and

inf  @(B)w’(B)F > o(Bo)w(Bo)?,

B€¢@Zr32r30
where rp and rp, denote the radius of the d-balls B and By, respectively.

We will use the following statement on the boundedness of the weighted Hardy
operator

H,g(t):= / gls)w(s)ds, 0<t<eoo.
t
where w is a weight. The following theorem was proved in [21].

THEOREM 2.1. [21] Let vy, vy and w be weights on (0,0) and v|(t) be bounded
outside a neighborhood of the origin. The inequality

supvy(t) Hyg(t) < Csupvi(t)g(t)
>0 >0

holds for some C > 0 for all non-negative and non-decreasing g on (0,°) if and only

if
° d
B::supvz(t)/ &<w
>0 i SUPgrewVi(T)

3. Sublinear operators on generalized weighted Morrey spaces M, ,(G,w)

In this section, we shall give the boundedness of the sublinear operators Ty, ¢ €
[0,0) generated by Calderén-Zygmund operators (o = 0) and generated by fractional
integral operator (¢ > 0) on generalized weighted Morrey spaces M), (G, w).

The following are true for the homogeneous group space [3, 40]. Let us note that
the homogeneous group is a special case of homogeneous spaces, so we can state
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LEMMA 3.1. Let 1 < p <o and w € Ay(G). Then the maximal operator M and
Calderdn-Zygmund operator T are bounded on L,(G,w) for p > 1 and from Li(G,w)
to WL (G,w).

LEMMA 3.2, Let 1 <p<g<e, weAp(G), 0<OC<—and1 ~—& Then

the fractional integral operator Iy, is bounded from L,(G,wP ) to L (G w‘f) for p>1
and from Li(G,w) to WL, (G,w?).

"t:

The following theorem is valid.

THEOREM 3.1. Let 1 < p <o, w€ Ap(G) and Ty be a sublinear operator satis-
fying condition (2.3) with oo =0 which is bounded on L,(G,w) for p > 1, and bounded
Sfrom Li(G,w) to WL (G,w). Then, for p > 1 inequality

L [ _1dt
1Tof L, B.w) < CW(B)"/2 11z, (Bxo.r) ) W(B(x051)) P "
cor

holds for any ball B= B(xq,r) and forall f € LIOC(G w), where co > 1 is the constant
from the triangle inequality (2.1) and C does not depend on f, xy and r > 0.
Moreover, for p =1 inequality

d
170 Ity < CWB) [ Wfleyatpn #(BGo0) ™ T G

holds for any ball B = B(xo,r) and for all f € L'(G,w), where C does not depend
on f, xo and r > 0.

Proof. Let f € LII?C(G,W), p € (l,0) and w € A,(G). For arbitrary xo € G,
set B = B(xg,r) for the ball centered at xy and of radius r, 2¢oB = B(xo,2cor). We
represent f as

f=hth, (A0 =F0)as®y), LO)=f0xe,, ,0), >0,
and for all x € G we get
ITof(x)| < |Tofi(x)] + | Tofa ()|

If )]
S| Tof(x) |+/ch oy 1”Qary (3.2)

First we show that 7pf(x) is well-defined a.e. x and independent of the choice B
containing x.

As Tj is bounded on L,(G,w) for p > 1 and fi; € L,(G,w), Ty fi is well-defined.
Next, we show that the second-term of the right-hand side (3.2) converges absolutely
forany f € Lifc(G,w) and almost every x € G.
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. . C .
Observe that the inclusions x € B, y € “(2coB) imply ||xooy~!|| ~ ||xoy~!||. Then
we get

Tofa(x </ /
} 0fa( )}N C2c0B) ||xoy IHQ ~ Jo ) onoy 1||Q >

By Fubini’s theorem we have

dt
Ty = / / 7 dy
/2coB IIXOOy IHQ 2coB ooy~ U

~ dy—57 S Yor1-
2cor J B(xq.t)\B(x, 2c0r tQJrl 2cor JB(xp,t) tQJrl

Applying Holder’s inequality, we get

1025 [ ot~

_ dt
5/2€0er”L,,(B(x0,t),w) [w WHLP,(B(XO,:))@ (3.3)

1/p ﬂ
t

<O [ 10010 W(Br0,0)
cor

Therefore T f>(x) exists for all x € B. Since G = J,~oB(xo, ), we obtain the existence
of Tf(x) forae. x€G.

From (3.2) we have
1Tz, Bw) < I Tof1llz, @) + | Tof2llL, 1)

Since f1 € L,(G,w), Tpfi € L,(G,w) and from the boundedness of Ty in L,(G,w)
it follows that:

1TofillL,Bw) < I T0fillz,@w) < CllfillL,@mw) = Cllf L, 2coBw):

where constant C > 0 is independent of f.
Moreover, from (3.3) for all p € [1,0) inequality

L[> 1/ dt
IT0fallty ) S LW B [ 100 w(BG00) 7S G
cor
is valid. Thus
°° g, dt
||Tof||L,,(B,w)§||fHLp.w(2coB)+[ ]A{,p (B )”/2 ”fHLp(B(xo,t),w)W(B(xo,l)) l/pT.
cor
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On the other hand,
< dt
I lepconsnr = B Ity ceonon [, 2557
cor
© dt
S |B|/ZCMHf”L,,(B(xQ,t),w) o) (3.5)
o dt
<w(B)P w7l /2 sty 7
1 dt
<) [ 1 latngnn 197y w0
1 1 1/, dt
<O VB [ 1y a0 w(BGi0,1) P
2cor t
Thus
l/pﬂ

1 L[ _

1 To 1L, Bw) S [W]A{,pW(B)” /26 rHf”L,,(B(xo,t),w)W(B(x07t)) -
0

Let f € L'*°(G,w) and w € A (G). As Ty is bounded from L, (G,w) to WL (G,w)

and f1 € Li(G,w), Tpfi is well-defined. Next, we show that the second-term of the

right-hand side (3.2) converges absolutely for any f € L'°(G,w) and almost every
xeG.
Indeed,

TS [ Ifllsatayp =

_ dt
5/2 112y Bexo) ) W e (BOx.0)) o1 (3.6)
cor

d
< las [ I a0 #(BC0,0) ™

Therefore T f»(x) exists for all x € B and for f € LI°°(G,w) and w € A|(G) we get
the existence of Tpf(x) fora.e. x€ G.
From the weak (1,1) boundedness of T and (3.5) it follows that:

I Tof1llwe, Bw) < ”TOleWLl cw) Sl ew = 111z, o)

= dt
~ 1Bl cam |, 777 SB[ 1 eansogo77
- dt
B iy [ 1y w0 o
= _ dt
< w(B) /zcor”fHLl(B(xo,t),w) [w IHLN(B(xo,t))@
i

<l wOB) [ 1My m1.0 (B30,

Then by (3.4) and (3.7) we get inequality (3.1). U
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THEOREM 3.2. Let 1 < p <oo, w€ A,(G) and (@1, ¢2) satisfy the condition

. L
w ess inf @y (x,5) w(B(x,s))? .

/ fese= : — < C@y(x,r), (3.8)
r w(B(x,1))? !

where C does not depend on x and r.

Let Ty be a sublinear operator satisfying condition (2.3) with o« = 0 which is
bounded on L,(G,w) for p > 1, and bounded from L(G,w) to WL{(G,w). Then
the operator Ty is bounded from M o (G,w) to M, ,(G,w) for p > 1 and from
M 4, (G,w) to WM, 4,(G,w).

Proof. By condition (3.8), Theorems 2.1 and 3.1 with v5(r) = @2 (x,7) "', vi(r) =
1 h
@1 (x,r) " 'w(B(x,t)) 7, g(r) = £, B and @(r) =w(B(x,r)) 7 r we have for
p>1
T < _1ldt
1Tof 11,4, (G0) S sup. (Pz x,7) ||fHL,, Blo)w) WB(x 1)) 7 =

xeG

= sup o(x, V)_IW(B(XJ))_F 2B a0) = 1y g, (G0)

x€R™ r>0
and for p=1
< _ydt
HTOfHWML(pZ(G,w)N SUP §02xr / ||fHL1 B(xt), ((x,t)) 7
xeG
= sup wl(x,r)’IW(( r)” 1IIfHL. B w) = I 1lbt, g @) O
x€G,r>0

COROLLARY 3.1. Let 1 < p <eo, we A,(G) and (@1, ¢2) satisfy the condition
(3.8). Then the operators M, T are bounded from M o (G,w) to M, 4,(G,w) for
p > 1 and from My o, (G,w) to WM 4,(G,w).

COROLLARY 3.2. Let 1 < p <o, we Ay(G) and ¢ € @l satisfy the con-
dition (1.5). Let Ty be a sublinear operator satisfying condition (2.3) with o« = 0
which is bounded on L,(G,w) for p > 1, and bounded from Li(G,w) to WL{(G,w).
Then the operator Ty is bounded on M, o(G,w) for p > 1 and from M o(G,w) to
WM17¢(G7W).

COROLLARY 3.3. Let 1 < p <o, w € Ap(G) and ¢ € 4l satisfy the condition
(1.5). Then the operators M, T are bounded on M, o(G,w) for p > 1 and from
My o(G,w) to WM, »(G,w).

K—1
Note that for ¢ (x,7) = @2(x,r) = w(B(x,r)) 7 , from Theorem 3.2 we get the
following new result.
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COROLLARY 3.4. Let wc€ Ay, 1 <p<Qand 0 <k < 1. Let Ty be a sublinear
operator satisfying condition (2.3) with oo = 0 which is bounded on L,(G,w) for p >
1, and bounded from L\(G,w) to WLi(G,w). Then the operator Ty is bounded on
Ly «(G,w) for p>1 and from L (G, w) to WLy (G,w).

The following corollary for the operators M and 7" was proved in [31].

COROLLARY 3.5. Let w€ Ap, 1< p<Q and 0 <k < 1. Then for p > 1, the
operators M, T are bounded on L, «(G,w) and for p =1, the operators M, T are
bounded from L (G,w) to WL (G,w).

REMARK 3.1. Note that, in the Euclidean setting Theorems 3.1 and 3.2 were
proved in [20].

Next we state one of our main results. First we present some estimates which are
the main tools for proving our theorems, on the boundedness of the operators 7, with
o € (0,0) on the generalized weighted Morrey spaces.

THEOREM 3.3. Let 1 < p < g < oo, 0<OC<%, éz%—%,andweAIw. Let

also Ty be a sublinear operator satisfying condition (2.3), bounded from L,(G,w”) to
Ly(G,w?) for p > 1, and bounded from Li(G,w) to WLy (G,w?) for p=1.
Then, for 1 < p < g inequality

oo

1
1 Tof 1L, B(xr)wa) < CWI(B(x,r))4 /2 MMz By ey W (Blx, 1))

cor

1
q

dr
t

holds for any ball B(x,r) and for all f € L};’C(G,w), where C does not depend on f,
x and r > 0.
Moreover, for p =1 inequality

dt
7 (3.9)

Lo 1
| Tof Wiy (Bxr)wey < CWI(B(x, V))"/2 1|2y By ) W (B(x,2)) 4
cor

holds for any ball B(x,r) and for all f € L'**(G,w), where C does not depend on f,
x and r> 0.

Proof. Let 1 < p < q < oo, 0<a<%, éz%—%,andweAP7q(G). For

arbitrary x € G, set B= B(x,r), 2coB = B(x,2cor). We represent f as
F=fitf RO =0 epl) £O) =0y 0) 730,

and have
1 Taf |z, Bwa) < | TafillL,Bwe) + [ Tef2llL,Bwe)-

Since fi € L,(G,w"), Tofi € Ly(G,w?) and from the boundedness of T, from
L,(G,wP) to Ly(G,w?) it follows that:

1T filly ey < 1 TafillLy@wa) < CllfillL,uwr) = Cllf L, @eoBwr) s
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where constant C > 0 is independent of f.

Itis clear that € B, y € l:(2c0B) implies |[xoy~!|| ~ [lzoy™!|. We get

lfO)l dy

(2¢0B) |lxoy~t|@—e

Tuh@) S |,

By Fubini’s theorem we have

1f()] / /°° dt
B UA AN NP _ 2\
/B(zcom ooy 112 Joae,m) ‘f(y”( Jleoy~1]| tQ“*“> Y

= dt
~ d ) _a
2¢cor </2007§HXO)7’1H<1 |f(y)‘ Y IQ+170(

o dt
< _
< /2 ( /B o 70)1dy) g

By applying Holder’s inequality, we get

Tafo S [, Iy 2

i dt
—1
S TR e e
S ) q _ldt
N/ ”fHL,,(B(x,t),Wp)W (B(x,t)) Rt
2cor p

Moreover, for all p € [1,e0) inequality

[ _1
1TafallL, 8wy S W (B)4 /2W ANz, By oy W (B(x,1)

is valid. Thus

dr
t

Lo _
TS |y Bway S S, p(2c0m) + W (B) 7 /2 1|z, (Bxs) ey I IHLP/(B(x,t))
’ cor

On the other hand,

< dt

1Az, 2comavry = 1Bl 2l fll, 2coBar) /2€0r O a

1—a [ dt
<|Bl e /2W ”fHLp(B(x,t),wl’)lm
1 o dt
q z —1
SwIB) w8 /ZCMHf”L,,(B(x,t),wp)t—Q_H_a
° dt

1
L -1
Swi(B)a /2€0r Hf”L,,(B(x,z),wr’) [w HLP/(B(x,t)) 0r1-a

L[ _1
S Wolag WB)T [ 1l oy om0 (Bx0) 0
cor

(3.10)

dt
tQ+1—O£ .

(3.12)



SOBOLEV-MORREY ESTIMATES FOR HYPOELLIPTIC OPERATORS 235

Thus

_Ldt
9 —.

Lo
1 Taf |y (Bway < W (B) /20 ) A1z, By wry W (B(x,1))

0
Let p = 1. From the weak (1,¢) boundedness of Ty, and (3.12) it follows that:

| Tofillwe,wey < T fillwe,cw

S Allz @) = 1Ly 2coBw)

- 11— < dt
~ |B| QHf||L1(2coB,w)/ e
a dt
<|B|" 6 /
| | 20 ”fHLl tQ+l o (313)
Lo dt
SwB) I ) /2 Iy 3tc01 757
L[ _ dt
SB[ ey I IHLN(B(,C,,))W
cor
<wamt (7 4 _Ldt
Swi(B)a 11z, By ) W (B(x,2)) "4 —.
2cor 14
By (3.11) and (3.13) we get inequality (3.9). U
THEOREM 3.4. Let 1< p<g<e, 0<a <2 L—-1_& weA, (G) and
(@1,92) satisfy the condition
1
w ess inf @y (x,5)w? (B(x,s)) 7 ;.
/ fess : — < Coy(x,r), (3.14)
’ w(B(x,1))

where C does not depend on x and r. Let Ty, be a sublinear operator satisfying
condition (2.3) with o € (0,Q), bounded from Ly, ,»(G) to Ly (G) for p > 1, and
bounded from L ,,(G) to WLy, (G) for p=1. Then the operator Ty is bounded from
M, o, (G,wP) to My 4,(G,w9) for p > 1 and from My o, (G,w) to WMy ¢, (G,w?) for
p = 1. Moreover, for p > 1

1 Tecf My g, (09) S IS NI g, (G0

andfor p=1
1 Teef llwaty g (@) S 11ty g, (G0)-
Proof. By condition (3.8), Theorems 2.1 and 3.3 with v, (r) = @ (x,r)” 1, vi(r)=
1 el
Q1 (x,r) " WP (B(x,1)) "7, g(r) = || fll1, (B(x.r)w) and @(r) =wi(B(x,r))" 4 r~" we have
for p>1
< _idt
ety S 590 @2050) ™" [ty w9 (B0) 4

SJ sup @y (x7 r)*lwp(B()@ V))iﬁ Hf”Lp(B(x,r),wl’) = ||fHMp‘(pl (G,wp)
x€G,r>0
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and for p=1
< [ q _Ldt
1T whty g Gy S SUP @2(x,7) ”fHL,,(B(x.,t),w) wi(B(x,1)) 4 "

x€G,r>0

= Ssup (pl(xvr)ilw( ( )) 1Hf||L1 B(x.r),w) Hf”Ml 0 (Gw)- O

x€G,r>0

1
COROLLARY 3.6. Let | <p<q<o, 0<a< L=1_€ wea,, (G)and

(@1,92) satisfy condition (3.14). Then the fractional maximal operator My, and the
fractional integral operator Iy are bounded from M, o (G, W) to My 4,(G,w?) for
p > 1 and from My o, (G,w) to WMy ¢, (G,w?) for p=1.

In Theorem 3.4 if take @1 = @ € 4L, @2(r) = r*@(r), then we get the following
new corollary.

weA,,(G) and

COROLLARY 3.7. Let I <p<g<e, 0<a<,
O € Y, satisfy the condition

1_1_«
qg p QO

/wt"‘_l(p(t)dt <Cro(n), (3.15)

where C does not depend on r. Let Ty, be a sublinear operator satisfying condition
(2.3) with o € (0,0), bounded from L, ,»(G) to Lywi(G) for p > 1, and bounded
from Ly ,,(G) to WLy ,,a(G) for p= 1. Then the operator Ty, is bounded from M), (G, w)
10 My o o(r)(G,w) for p > 1 and from M o(G,w) to WM ,a o(r) (G, w) for p=1.

1
COROLLARY 3.8. Let I Sp<g<o, 0<a< L=1_€ wea,, (G)and

@ € 9L satisfy the condition (3.15). Then the operators My and 1, are bounded from
Jll/lp7(p(G,1vv) 10 My a4 (G,w) for p > 1 and from My o(G,w) to WM ;o o) (G,w)
or p=1.

K—1
For ¢y (x,r) = @2(x,r) = w(B(x,r)) 7 , from Theorem 3.4 we get the following
new result.

COROLLARY 3.9. Let 1 < p < g < oo, 0<oc<Q t=1-%,0<Kk<land

w €A, q(G). Let also Ty be a sublinear operator sansfymg condition (2.3) with o €
(0,0Q) bounded from L,(G,wP) to Ly(G,w?) for p > 1, and bounded from L(G,w) to
WL,(G,w?). Then the operator Ty, is bounded from Ly (G, wP,w) to Ly xq/,(G,w9)
for p>1 and from Ly (G, w,w?) to WL xq(G,w?) for p=1.

The following corollary for the operator I, was proved in [31].

COROLLARY 3.10. [31] Let 1< p<g<e, 0<a<? L=1-8 0<Kk<?

and w € Ap 4(G). Then the operators My and 1y are boundedfrom Ly (G, wP w7)

10 Ly xcq/p(G,w9) for p > 1 and from Ly (G, w,w?) to WLy xq(G,nw9) for p=1.

REMARK 3.2. Note that, in the Euclidean setting of Theorems 3.3 and 3.4 were
proved in [20].
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4. Weighted Morrey inequalities

In this section, we will derive some interpolation inequalities for generalized weigh-
ted Sobolev-Morrey norms. We recall a statement in [52]:

LEMMA 4.1. Let K € C(G\ {0}) be homogeneous of degree o (o € R) with
respect to the dilations (8, );~0, then there exists a constant ¢ > 0 such that

IK(2) < cllzll®

where ¢ = sup|K(z)|, Zn denotes the unit sphere of G.

Zy
Observe that if the integral kernel K(-) is homogeneous of degree —Q, then
Tf(x) =V, [ Kxoy™)f(s)dy

is obviously a Calder6n-Zygmund operator.

Given two balls B, , B,, and a function ¢ € C5(G), let us write B, < ¢ < B,
to mean that 0 < ¢(x) <1, ¢(x) =1 on B, and supp¢ C B,,. Now we show several
interpolation inequalities in generalized weighted Sobolev-Morrey spaces on G.

LEMMA 4.2. Let 1 < p <oo, w€ Ap(G) and ¢ satisfy the condition (1.3). Then
there exists a constant ¢ > 0 such that for any € > 0 and any test function u, the
following inequality holds

C
1Du]|as,, o (G0) < € 1D%0t]lpt, (@) + 2 Il (@ m)-

Proof. From Lemma 2.1, we have
Xuu(x) = [ X(xoy™)Zuty)dy = [ Tiloy™)Zur)dy
Let ¢ be a cutoff function with B;>(0) < ¢ < B;(0), and split I'; as
I =0T+ (1—¢); =Ko+ Ko,
where Ky and K.. are all homogeneous of degree 1 — Q, then

Xiu(x) = Ko(xoy™").Zu(y)dy
(G xoy1||<1}

+/ Keo(xoy V) Lu(y)dy :=I+1I. 4.1
{y€G:|lxoy~t][>1/2}

In terms of Lemma 4.1 (see, [31, pp. 1332]),

i< / [Ko(xoy™ || ZLu(y)ldy < CMZu(x), 4.2)
{yEG:ony*IH<1}
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where C does not depend on x.
Using Corollary 3.1, we infer that

17131, o (Gon) S 1MLt a1, (6 0) S 1Lttty o G0) S 1D Ul 11y (G 0)- (4.3)

In terms of Lemma 4.1 (see, [31, pp. 1332]),
=/ Ko(x ' oy) Luly)dy| S Mu(x). (4.4)
{yeG:|lxoy~1||>1/2}
It follows by Lemma 3.5 that

1111[a, (Gow) S 1Mullpg, o (G0) < Cllellg, (@) (4.5)

where C does not depend on x.
Summing (4.3) and (4.5), we obtain

1D pg, (G w) S 1D 1tll0ty (@) + 14l (G-

A dilation argument leads to

€| Dullat, p(cw) S EXNDullagy (@) + 14101y ()
and the proof of the lemma is concluded. [J

In the case of Euclidean space, the interpolation result on higher order derivatives
can be deduced by the induction. But in our context the interpolation lemma on higher
order derivatives of vector fields cannot be deduced simply from that on lower order
derivative by the induction. Now we need to use the representation formula of the
higher order derivative on homogeneous groups to arrive at our aim.

LEMMA 4.3. (See [0]) Let Q > 4, for every integer k > 2 and any couple of left
invariant differential monomials P**=' and P*~2, homogeneous of degree 2k — 1 and
2k —2, respectively, we can determine two kernels K", K(?) € C*(G\ {0}) which are
homogeneous of degree 1 — Q and 2 — Q, respectively, such that for any test function
u,

PN = (24 kW) (), P 2u(x) = (240 kD) (),

where L= L.FL ... L.
=

k times

LEMMA 4.4. Let 1 <p <o, w€ A,(G) and @ satisfy the condition (1.3). If
k > 2 is an integer, then there exists a constant ¢ = ¢(Q,k) > 0 such that for every
€ > 0 and any test function u,

B C
HDzk IMHMP,«J(G,W) <E ||D2k”||Mp,<p(G,W) + W HMHMNP(G’W)'
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Proof. Suppose that ¢ is a cutoff function with B} >(0) < ¢ < B1(0). By Lemma
4.3, we have

Py (x) = ((.,Sﬂku) *K(1)> (x).
Now let us split K!) in the following way
1 1 1 1 1
KD = ok® 4 (1- )k =V + kD),
where Kél) and K& are homogeneous of degree 1 — Q. Thus

P lu(x) = Ky (xoy™") L u(y)dy

{veGi|lxoy~ || <1}

+ KW(xoy™) L uly)dy
{yeG:flxoy~1[|>1/2}

=1 (x) -I-Iz(x). (4.6)

It is easy to see with (4.2) that

i< [ K ey DLy S ML u).
{Y€G:|lxoy~t|<1}

From Corollary 3.1
111 10ty g (G0) S 1MLt g 60) S 1L sl p6) S ID* el g6y 47
e have by using Lemma 4.1 and the way in (4.4) (see, [31, pp. ,
We have by using L 4.1 and th y in (4.4) ( [31, pp. 1333])
S |u(y)ldy
L(x)| < / —— < Mu(x).
L) ”i;o {yeG2i-1<xoy 1| <27} [[xoy 1| @+2A1 )

Applying Lemma 3.5

1) 14y (G w0) S MUl o (Gw) S N1llbt, (G ) - (4.8)
Combining (4.7) and (4.8), we have from (4.6) that

2k— 2k
1D ullag, ) S IDutllat, o (@) + 28llaty (G ) -
A dilation argument shows

2k— 2k— 2k 2k
e D™ Ml y(6) S EXID* ullat, o @) + 11|ty (G

and this ends the proof. [
LEMMA 4.5. Let 1 <p <o, w€ A,(G) and @ satisfy the condition (1.3). If
k > 2 is an integer, then there exists a constant ¢ = ¢(Q,k) > 0 such that for every

€ > 0 and any test function u,

B C
HDzk 2”t”Mp,aJ((G‘v,w) < 82HD2k”||Mp,<p(G.,W) + m HMHMNP(G’W)'
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Proof. Let ¢ be a cutoff function with B} ,(0) < ¢ < B;(0). By Lemma 4.3, we
see

P2y (x) = ((zku) « K<2>) (x).
Split K2 as
K® =9k 4 (1-¢)k® =k + k2,

where K(g2) and K2 are homogeneous of degree 2 — Q, then

sz_zu(x) = Ké2)(xoy_l)$ku(y)dy
{yeG:|lroy=t||<1}

+ K(xoy™) 2 u(y)dy
{yeG:|lxoy~1>1/2}
=Ji(x) + 2 (x).
Analogously to the proof of Lemma 4.4, it yields

171 a0 @) S ML ullag, (o) S NLEttllrt, 0G00) S 1D Ullat, (6 )

I2() 6,0 (G ) S 1Mttllpg, o(G0) S l2tllag, (G ) -
Therefore
1D 21 a1, o (©w) S D Ullbty (0 + 18]l 01y (G 0)-
A dilation argument deduces

2k—2 2k—2 2k 2k
e DT ully, p () S ETNIDT Uy, (@) T 1l o (G)-

This completes the proof. [

5. Proof of the main theorems

The following result is known, see [6, 15].

LEMMA 5.1. For some integer h with 0 < y < Q, assume that Ky € C*(G\ {0})
is homogeneous of degree y— Q, f is an integrable function and T, is defined by

T,f = fxKy,
PV is a left invariant homogeneous differential operator of degree v, then
P'Tyf =V.P.(f*P'Ky)+cf

for some constant ¢ depending on Ky and PY.
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Proof of Theorem 1.1. Let u € S5, ¢(G,w) N S) (G, w). It holds from Lemma
2.1 '

XiXju(x) = V.P./ Tij(xoy™ ) Lu(y)dy + cijLu(x),
: o }
and using Corollary 3.1,

1XiXjttl |, o (@ 0) S 1L [0, (G ) - (5.1)

m
Due to apXou = Zu— Y a;jX;X;, it follows that

ij=1
1 Xoul a1, o (Gw) S 1L UM, (G w)- (5.2)
Then by (5.1) and (5.2)
1Dl a1, o) S Ll 11y (G 0)- (5.3)

From Lemma 4.2, we have

1
1Dulpg, (6 0) S E 1D 2l01, (6 0) + & Nl o)
1
S el Lully o) + 7 el (@ 0)- (5.4)
Combining (5.3) and (5.4), the proof is ended.

[l s,., o(G) = 1111y (Go) + 1P211, o G.0) + D78l 11, (G

S Lully, o) + 1l pew)- O

Proof of Theorem 1.2. Let u € Sy o(G,w) OS(I).VP(G,W), where k is a positive
integer. In order to prove the conclusion, we need to establish the following inequality:
If k is a positive integer, there exists a constant C > 0 such that for every test function
u,

2k 2%k—2
1D ullp,, p (@) < CIDT"Lullp, oG o) (5.5)

When k = 1, by (5.3),
1D?ull31, (o) S Ll (G- (5.6)

When k > 2, since X, cannot be expressed as the composition of two vector fields
with homogeneity of degree 1, it follows that D cannot be obtained from D(DF!)
directly. But P* can be written as XoP**~2 or X;P*~! (i =1,...,m), denoted by
P?P*=2 and PP*~1, respectively. Furthermore, it holds from Lemma 4.3 that

Py () = <($ku) *K(n)(x), P2y () — ((gku) *K<2>>(x),

where K1), K?) are homogeneous of degree 1 —Q and 2 — Q, respectively.
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In the case of P?f = P2p%k=2 e have from Lemma 5.1,

P u(x) = V.P. /G PR (xoy ) (L) (y)dy + ey (Lru) (),

where P2K(?) is homogeneous of degree —Q. Applying Corollary 3.1,

1Pl g S| [ PPED oy (L ) 0)dy|

S 1L Ul 6y S ID*2Lullpg, (G-

zk
Mp,o(G,w) 2% ullMy @)

In the case of P?¥ = PP?*~1 we obtain by using Lemma 5.1,
PPu(x) = V.. [ PR (roy™) (240 (3)dy + (2 4u) (),
G
where PK(!) is homogeneous of degree —Q. By virtue of Corollary 3.1,

2k < (D). 5y-! k k
1Pty g0 5 | [ PKOCor L0y, 1L g g0

SNL ullug, 6y SIDH > Lutllag, o6 0)-
As a consequence
HDzk”HM,,J,,(G,w) S ||D2k_2-=5ﬂ”HM,,ﬁ¢(G,w)7

and (5.5) is proved.
Then
ID**2ul1, ) S ID* ZLullL, o6 w)- (5.7

Lemma 4.4 implies that

||D2k+1 <eg HD2k+2

1
UllL, oG S 1y, 6.0+ Zar 1L, p@m)

1
53“D2k3u||L,,‘(p(G,w)+W [ullz, o(Gw)- (5.8)

Combining (5.7) and (5.8), we have

D2k+1 D2k+2

[ll5y1.p 0 (@) = llellmg, g(G) + | Ul My o (Gw) T |l UM, (Gw)
SID* ZLullut, o G.0) T 111, o(@.0) = 1L 8550, (@00 + [14llaty (6.0 -

Theorem 1.2 is proved. [J

Proof of Theorem 1.3. From Lemma 2.1, we get

X,-u(x)z/gl",-(xoy’l).i”u(y)dy.
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Since the function T;(-) is homogeneous of degree 1 — Q, it follows by Lemma 4.1 that

Lu(y)|
o< [ 200,
[Xiu(x)| < & Teoy 1o y

and we finish the proof by applying Corollary 3.6 with oc = 1.

|-Zu(y)|
. < _
||XluHMqﬁ¢2(G,w) S H /G oy 1[21 ‘

SJHXMHM,,JPI(G,WV i=12,....m. 0

MqA,(Pz (G,W)
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