
Journal of
Mathematical

Inequalities

Volume 16, Number 1 (2022), 219–245 doi:10.7153/jmi-2022-16-17

GENERALIZED WEIGHTED SOBOLEV–MORREY

ESTIMATES FOR HYPOELLIPTIC OPERATORS

WITH DRIFT ON HOMOGENEOUS GROUPS

VAGIF S. GULIYEV

(Communicated by J. Pečarić)

Abstract. Let G =
(
RN ,◦,δλ

)
be a homogeneous group, Q be the homogeneous dimension

of G , X0,X1, . . . ,Xm be left invariant real vector fields on G and satisfy Hörmander’s rank
condition on RN . Assume that X1, . . . ,Xm (m � N − 1) are homogeneous of degree one and
X0 is homogeneous of degree two with respect to the family of dilations

(
δλ

)
λ>0 . Consider the

following hypoelliptic operator with drift on G

L =
m

∑
i, j=1

ai jXiXj +a0X0,

where (ai j) is a constant matrix satisfying the elliptic condition in Rm and a0 �= 0 . In this
paper, for this class of operators we obtain generalized weighted Sobolev-Morrey estimates by
establishing boundedness of a large class of sublinear operators Tα , α ∈ [0,Q) generated by
Calderón-Zygmund operators (α = 0) and generated by fractional integral operator (α > 0) on
generalized weighted Morrey spaces and proving interpolation results in generalized weighted
Sobolev-Morrey spaces on G .

1. Introduction and statement of main results

Let G =
(
R

N ,◦,δλ
)

be a homogeneous group on R
N and X0,X1, . . . ,Xm (m < N)

be left invariant real vector fields on G . Assume that X1, . . . ,Xm are δλ -homogeneous
of degree one and X0 is δλ -homogeneous of degree two with respect to the family of
dilations

(
δλ

)
λ>0 and satisfying Hörmander’s condition

rankL(X0,X1, . . . ,Xm)(x) = N, x ∈ G, (1.1)

where L(X0,X1, . . . ,Xm) denotes the Lie algebra generated by X0,X1, . . . ,Xm .
Our aim is to check generalized weighted Sobolev-Morrey estimates of the hy-

poelliptic operator with drift

L =
m

∑
i, j=1

ai jXiXj +a0X0, (1.2)
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where a0 �= 0, (ai j)m
i, j=1 is a constant coefficient matrix satisfying that for some μ > 0,

μ−1|ξ |2 �
m

∑
i, j=1

ai jξiξ j � μ |ξ |2, ξ ∈ R
m.

The operator L has been studied extensively by many authors. Hörmander in
[30] pointed out that (1.1) implies the hypoellipticity of (1.2). In [15], Folland proved
that homogeneous hypoelliptic operators on nilpotent groups possess homogeneous
fundamental solutions. For the further properties of the fundamental solutions, see
Bramanti and Brandolini [6]. In the papers [6, 28, 32, 52] a priori estimates for the
operator L are considered. The operator L contains many particular cases. When

X0 =
n
∑

i, j=1
bi jxi∂x j − ∂t , Xi = ∂xi , i = 1,2, . . . ,m , L is a Kolmogorov-Fokker-Planck

ultraparabolic operator of the kind

L1u =
m

∑
i, j=1

ai j∂ 2
xix j

u+
n

∑
i, j=1

bi jxi∂x j u− ∂tu,

where (x, t) ∈ Rn+1 , (ai j)m
i, j=1 is a positive definite matrix, (bi j)n

i, j=1 is a constant
coefficient matrix with a suitable upper triangular structure. It is clear that L1 is a heat
operator, when m = n , (bi j)n

i, j=1 = (0)n
i, j=1 . For more details see [38, 39, 54, 55].

The classical Morrey space was first introduced by Morrey [41] to study the partial
differential equations, which characterized the regularity of the solutions to the second
order elliptic partial differential equations. Since then, many studies have been focused
on Morrey spaces; see, for instance, [1, 2, 12] and the references therein. In [1, 12]
the authors showed the boundedness in Morrey spaces for some important operators
in harmonic analysis such as Hardy-Littlewood operators, Calderón-Zygmund singular
integral operators and fractional integral operators. Moreover, various Morrey spaces
are defined in the process of study. The author, Mizuhara and Nakai [17, 42, 47] intro-
duced generalized Morrey spaces Mp,ϕ(Rn) (see, also [18, 19, 22, 56]). Komori and
Shirai [36] defined weighted Morrey spaces Lp,κ(w) . In [20] the author gave a con-
cept of the generalized weighted Morrey spaces Mp,ϕ(Rn,w) which could be viewed
as extension of both Mp,ϕ(Rn) and Lp,κ(w) . In [20], the boundedness of the clas-
sical operators and their commutators in spaces Mp,ϕ(Rn,w) was studied, see also
[24, 25, 29, 35, 48, 49, 50, 51].

In this paper motivated by these articles, we will establish the boundedness of sub-
linear integral operators on generalized weighted Morrey spaces in the framework of
homogeneous groups. The class of sublinear operators under consideration contains in-
tegral operators of harmonic analysis such as Hardy-Littlewood and fractional maximal
operators, Calderón-Zygmund operators, potential operators on homogeneous groups,
etc. Homogeneous groups include the Euclidean space, the Heisenberg group, and
the Carnot groups, see [5, 11, 16]. Furthermore, we give applications to generalized
weighted Sobolev - Morrey estimates for hypoelliptic operators with drift on homoge-
neous groups. Also, we obtain generalized weighted Morrey estimates for the sublinear
operators generated by fractional integral operators on the homogeneous group and an
application.
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Let us state the following three main results of the paper.

THEOREM 1.1. (Generalized weighted Sobolev-Morrey estimate) Let 1 < p <
∞ , Q > 4 , w ∈ Ap(G) and ϕ satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ(x,s)w(B(x,s))
1
p

w(B(x,t))
1
p

dt
t

� ϕ(x,r), (1.3)

Let also u ∈ S2,p,ϕ(G,w)∩S0
1,p(G,w) . Then there exists a constant C > 0 such that

‖u‖S2,p,ϕ(G,w) � C
(
‖L u‖Mp,ϕ (G,w) +‖u‖Mp,ϕ(G,w)

)
, (1.4)

where Ap(G) is Muckenhoupt class,

‖u‖S1,p(G,w) = ‖u‖Lp(G,w) +
m

∑
i=1

‖Xiu‖Lp(G,w),

‖u‖S2,p,ϕ(G,w) = ‖u‖Mp,ϕ(G,w)+
m

∑
i=1

‖Xiu‖Mp,ϕ (G,w)+
m

∑
i, j=1

‖XiXju‖Mp,ϕ (G,w)+‖X0u‖Mp,ϕ(G,w).

The space S2,p,ϕ(G,w)∩S0
1,p(G,w) consists of all functions u∈ S2,p(G,w)∩S0

1,p(G,w)
with D2u ∈ Mp,ϕ(G,w) , and is endowed by the same norm (see Definition 2.2). Recall
that S0

1,p(G,w) is the closure of C∞
0 (G) with respect to the norm in S1,p(G,w) .

REMARK 1.1. For ϕ ∈ G p
w (see Remark 2.2) the condition (1.3) stays the follow-

ing form

∫ ∞

r

ϕ(t)
t

dt � ϕ(r). (1.5)

COROLLARY 1.1. Let 1 < p < ∞ , Q > 4 , w ∈ Ap(G) and ϕ ∈ G p
w satisfy the

condition (1.5). If u ∈ S2,p,ϕ(G,w)∩S0
1,p(G,w) , then inequality (1.4) is valid.

COROLLARY 1.2. (Weighted Sobolev-Morrey estimate) [31] If 1 < p < ∞ , Q >
4 , w ∈ Ap , and 0 < k < 1 . If u ∈ S2,p,κ(G,w)∩S0

1,p(G,w) , then there exists a constant
C > 0 such that

‖u‖S2,p,κ(G,w) � C
(
‖L u‖Lp,κ(G,w) +‖u‖Lp,κ(G,w)

)
,

where

‖u‖S2,p,κ(G,w) = ‖u‖Lp,κ(G,w)+
m

∑
i=1

‖Xiu‖Lp,κ (G,w)+
m

∑
i, j=1

‖XiXju‖Lp,κ (G,w)+‖X0u‖Lp,κ(G,w).
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THEOREM 1.2. (Higher order generalized weighted Sobolev-Morrey estimate)
Let 1 < p < ∞ , Q > 4 , w ∈ Ap(G) and ϕ satisfy the condition (1.3). If k is a positive
integer and u ∈ S2k,p,ϕ(G,w)∩S0

1,p(G,w) , then there exists a constant C > 0 such that

‖u‖S2k+2,p,ϕ(G,w) � C
(
‖L u‖S2k,p,ϕ(G,w) +‖u‖Mp,ϕ(G,w)

)
, (1.6)

where ‖u‖S2k,p,ϕ(G,w) = ∑2k
h=1‖Dhu‖Mp,ϕ (G,w) (see Definition 2.2),

‖Dhu‖Mp,ϕ(G,w) = ∑‖Xji . . .Xjlu‖Mp,ϕ (G,w),

where Xji . . .Xjl is homogeneous of degree h (let us note that X0 is homogeneous of
degree two while the remaining X1, . . . ,Xm are homogeneous of degree one).

COROLLARY 1.3. Let 1 < p < ∞ , Q > 4 , w∈ Ap(G) , k be a positive integer and
ϕ ∈ G p

w satisfy the condition (1.5). If u ∈ S2k,p,ϕ(G,w)∩ S0
1,p(G,w) , then inequality

(1.6) is valid.

COROLLARY 1.4. (Higher order weighted Sobolev-Morrey estimate) [31] Let
1 < p < ∞ , Q > 4 , w ∈ Ap , 0 < k < 1 and k be a positive integer. If u∈ S2,p,κ(G,w)∩
S0

1,p(G,w) , then there exists a constant C > 0 such that

‖u‖S2k+2,p,κ(G,w) � C
(
‖L u‖S2k,p,κ(G,w) +‖u‖Lp,κ(G,w)

)
.

To inspect two theorems, we first prove the boundedness of sublinear operators
generated by Calderón-Zygmund operators T0 in generalized weighted Morrey space
on G by applying the representation formulas of functions. These formulas depend
on the fundamental solution of L . Next generalized weighted Sobolev-Morrey in-
terpolations on the first order derivatives and higher order derivatives of vector fields
are derived. Then based on these results, we obtain generalized weighted Sobolev-
Morrey estimates for L . Instead, we shall apply representation formulas of higher
order derivatives [6] to prove interpolations desired.

THEOREM 1.3. (Generalized weighted Morrey estimate) Let 1 < p < q < ∞ ,
1
q = 1

p − 1
Q , w ∈ Ap,q(G) , and (ϕ1,ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x,s)wp(B(x,s))
1
p

wq(B(x,t))
1
q

dt
t

� ϕ2(x,r). (1.7)

Then there exists a constant C > 0 such that for every L u ∈ Mp,ϕ1(G,wp) , we have

‖Xiu‖Mq,ϕ2(G,wq) � C‖L u‖Mp,ϕ1(G,wp), i = 1,2, . . . ,m.

If in Theorem 1.3 take ϕ1 ≡ ϕ ∈ G p
w , ϕ2(r) = rϕ(r) , then we get the following

new corollary.
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COROLLARY 1.5. Let 1 < p < q < ∞ , 1
q = 1

p − 1
Q , w ∈ Ap,q(G) , and ϕ ∈ G p

w

satisfy the condition

∫ ∞

r
ϕ(t)dt � rϕ(r). (1.8)

Then there exists a constant C > 0 such that for every L u ∈ Mp,ϕ(G,wp) , we have

‖Xiu‖Mq,rϕ(r)(G,wp) � C‖L u‖Mp,ϕ(G,wp), i = 1,2, . . . ,m.

COROLLARY 1.6. (Morrey estimate with two weights) [31] If 1 < p < q < ∞ ,
1/q = 1/p−1/Q, w ∈ Ap,q(G) , and 0 < κ < p/q, then there exists a constant C > 0
such that for every L u ∈ Lp,κ(G,wp,wq) , we have

‖Xiu‖Lq,κq/p(G,wq) � C‖L u‖Lp,κ(G,wp,wq), i = 1,2, . . . ,m.

The proof uses the extension of generalized weighted Morrey estimates for the
sublinear operators generated by fractional integral operators Tα , 0 < α < Q in the
Euclidean space to the homogeneous group and application to L .

REMARK 1.2. Note that, in the case w≡ 1 Theorems 1.1, 1.2 and 1.3 was proved

in [27]. Also in the case w ≡ 1 and ϕ(x,r) ≡ |B(x,r)| κ−1
p Corollaries 1.2, 1.4 and 1.6

was proved in [52].

Sobolev-Morrey spaces arose in the study of elliptic differential equations. Cam-
panato considered Sobolev-Morrey spaces in [10]. More is investigated on Sobolev-
Morrey spaces [13, 14, 23, 26, 31, 52, 54, 55]. The embedding relation can be found in
[45, 46].

It is mentioned that since the second and higher order derivatives of vector fields
are determined by Calderón-Zygmund operators rather than the fractional integral op-
erators, we cannot use the method here to generalize estimates in Theorem 1.3 to the
generalized weighted Sobolev-Morrey estimates for L .

The plan of the paper is the following. In Section 2, we introduce some knowl-
edge of the homogeneous group G , the fundamental solution for L and the gener-
alized weighted Morrey spaces. Section 3 is devoted to the proof of the boundedness
for sublinear operators generated by Calderón-Zygmund operators T0 in generalized
weighted Morrey spaces. In addition to this, generalized weighted Morrey estimates
for sublinear operators generated by fractional integral operators Tα , 0 < α < Q are
given. In Section 4 the generalized weighted Sobolev-Morrey interpolation inequalities
on G are shown. The main results are proved in Section 5.

By A � B we mean that A � CB with some positive constant C independent of
appropriate quantities. If A � B and B � A , we write A ≈ B and say that A and B are
equivalent.
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2. Preliminary

We describe first some notions on homogeneous Lie groups. For more details, we
refer to the monograph [5].

Let ◦ be a given group law on RN and assume that the map (x,y) → y−1 ◦ x is
smooth, then RN together with this mapping forms a Lie group.

If there exist 0 < w1 � w2 � . . . � wN , such that the dilations

δλ : (x1, . . . ,xN) 
→ (λ w1x1, . . . ,λ wNxN), λ > 0

are group automorphisms, then the space R
N with this structure is called a homoge-

neous group, denoted by G .
The homogeneous norm on G can be defined as follows. For any x ∈ G\{0} , set

‖x‖ = ρ ⇔ |δ1/ρx| = 1,

where | · | denotes the Euclidean norm, and set ‖0‖= 0. For this mapping the following
properties are valid.

1. ‖δλ x‖ = λ‖x‖ for every x ∈ G and λ > 0;
2. there exists c0 ≡ c(G) � 1, such that for every x,y ∈ G ,

‖x−1‖ � c0 ‖x‖ and ‖x◦ y‖� c0 (‖x‖+‖y‖). (2.1)

In view of these properties, we can define the quasidistance d by d(x,y) = ‖x ◦
y−1‖ and define the d -ball by B(x,r) ≡ Br(x) = {y ∈ G : d(x,y) < r} .

Let B = {B(x,r) : x ∈ G,r > 0} . By |E| denote the Lebesgue measure of E .
Note that B(0,r) = δrB(0,1) , therefore

|B(x,r)| = rQ|B(0,1)|, x ∈ G,r > 0, (2.2)

where Q = w1 + . . .+wN .
We will call that Q is the homogeneous dimension of G and always require Q > 4

in the sequel to estimate higher order derivatives of vector fields. By (2.2) the doubling
condition on G holds, that is

|B(x,2r)| � c|B(x,r)|, x ∈ G, r > 0,

where c is some positive constant, and so (G,dx,d) is a space of homogeneous type.
A differential operator Y on G is called homogeneous of degree β (β > 0) , if

for every test function ϕ ,

Y (ϕ(δλ x)) = λ β (Yϕ)(δλ x), λ > 0,x ∈ G;

a real function f on G is called homogeneous of degree α , if

f (δλ x) = λ α f (x), λ > 0,x ∈ G.

Clearly, if Y is a homogeneous differential operator of degree β and f is a ho-
mogeneous function of degree α , then Y f is homogeneous of degree α −β .
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LEMMA 2.1. (See [6]) Let L be a left invariant homogeneous differential oper-
ator of degree 2 on G , then there is a unique fundamental solution Γ(·) such that for
every test function u and every x ∈ G ,

(a) Γ(·) ∈C∞(G\ {0});
(b) Γ(·) is homogeneous of degree 2−Q;
(c) u(x) = (L u ∗Γ)(x) =

∫
G

Γ(x◦ y−1)L u(y)dy;
(d) Xiu(x) =

∫
G

XiΓ(x◦ y−1)L u(y)dy.
Moreover, for i, j = 1, . . . ,m, there exist constants ci, j such that

XiXju(x) = V.P.
∫

G

XiXjΓ(x◦ y−1)L u(y)dy+ ci jL u(x).

REMARK 2.1. If we set Γi = XiΓ , Γi, j = XiXjΓ , then it is obvious that Γi is
homogeneous of degree 1−Q and Γi j is homogeneous of degree −Q .

For any f ∈ Lloc
1 (G) , the Hardy-Littlewood maximal operator on G is defined by

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy, a.e. x ∈ G.

For any f ∈ Lloc
1 (G) , we say that T is a Calderón-Zygmund operator on G if

T f (x) = lim
ε→0

∫
{y∈G:‖x◦y−1‖>ε}

K(x◦ y−1) f (y)dy = V.P.
∫

G

K(x◦ y−1) f (y)dy,

where K satisfies

|K(x)| � c
‖x‖Q , |∇K(x)| � c

‖x‖Q+1 , x ∈ G\ {0}.

For any f ∈ Lloc
1 (G) , the fractional maximal operator Mα and the fractional inte-

gral operator Iα on G are defined by

Mα f (x) = sup
r>0

|B(x,r)|−1+ α
Q

∫
B(x,r)

| f (y)|dy, 0 � α < Q,

Iα f (x) =
∫

G

f (y)
‖x◦ y−1‖Q−α dy, 0 < α < Q,

respectively. If α = 0, then M = M0 is the Hardy-Littlewood maximal operator.
Suppose that Tα , α ∈ [0,Q) represents a linear or a sublinear operator, which

satisfies, for any f ∈ L1(Rn) with compact support and x /∈ supp f , inequality

|Tα f (x)| � C1

∫
G

| f (y)|
‖x◦ y−1‖Q−α dy, (2.3)

where C1 is independent of f and x .
Note that, the maximal operator M , and the Calderón-Zygmund operator T sat-

isfy the condition (2.3) with α = 0, and the fractional maximal operator Mα , and the
fractional integral operator Iα satisfy the condition (2.3) with 0 < α < Q .
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Let 0 < α < Q , 1 � p < Q
α and f ∈ Lp(G) . Then the integral Iα f (x) converges

absolutely for almost every x ∈ G , see [18, Theorem 3.2.1]. The Hardy-Littlewood-
Sobolev result states that (see [16], [17] and [18, Theorem 3.2.1]) the operator Iα is
bounded from Lp(G) to Lq(G) if and only if 1 < p < q < ∞ and α = Q/p−Q/q . Also
Iα is bounded from L1(G) to WLq(G) if and only if 1 < q < ∞ and α = Q−Q/q .

By a weight function, briefly weight, we mean a locally integrable function on G

which takes values in (0,∞) almost everywhere. For a weight w and a measurable set
E , we define w(E) =

∫
E w(x)dx , and the characteristic function of E by χE . Let B be

a ball on G and kB(k > 0) denote the ball with the same center as B whose radius is
λ times that of B .

If w is a weight function, we denote by Lp(G,w) the weighted Lebesgue space
defined by finiteness of the norm

‖ f‖Lp(G,w) =
(∫

G

| f (x)|pw(x)dx
) 1

p
< ∞, i f 1 � p < ∞

and
‖ f‖L∞(G,w) = ess sup

x∈G

| f (x)|w(x), i f p = ∞.

We recall a weight function w is in the Muckenhoupt’s class Ap(G) , 1 < p < ∞
[43], if

[w]Ap := sup
B

[w]Ap(B) = sup
B

( 1
|B|

∫
D

w(x)dx
)( 1

|B|
∫

B
w(x)1−p′dx

)p−1
< ∞,

where the supremum is taken with respect to all balls B and 1
p + 1

p′ = 1. For p = 1,

w∈A1(G) is defined by the condition Mw(x) �Cw(x) with [w]A1 = supx∈G

Mw(x)
w(x) , and

for p = ∞ A∞(G) = ∪1�p<∞Ap(G) and [w]∞ = inf1�p<∞[w]Ap .
A weight function w is in the Muckenhoupt-Wheeden class Ap,q(G) , 1 < p < ∞

[44], if

[w]Ap,q := sup
B

[w]Ap,q(B)

= sup
B

( 1
|B|

∫
B
w(x)qdx

)1/q( 1
|B|

∫
B
w(x)−p′dx

)1/p′
< ∞,

where the supremum is taken with respect to all balls D and 1
p + 1

p′ = 1. While p = 1,
w ∈ A1,q(G) with 1 < q < ∞ if

[w]A1,q := sup
B

[w]A1,q(B)

= sup
B

( 1
|B|

∫
B
w(x)qdx

) 1
q
(

ess sup
x∈B

1
w(x)

)
< ∞.

Weighted norm inequalities for fractional integral operators arise naturally in har-
monic analysis, and have been extensively studied by several authors. Let 0 < α < Q ,
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1 � p < Q
α , α = Q/p−Q/q , and w ∈ Apq(G) , then the operator Iα is bounded from

Lp(G,wp) to Lq(G,wq) , see [33] and in the Euclidean setting see [37].
We define generalized weighed Morrey spaces as follows.

DEFINITION 2.1. Let 1 � p < ∞ , ϕ be a positive measurable function on G×
(0,∞) and w be non-negative measurable function on G . We denote by Mp,ϕ(G,w)
the generalized weighted Morrey space, the space of all functions f ∈ Lloc

p (G,w) with
finite norm

‖ f‖Mp,ϕ (G,w) = sup
x∈G,r>0

ϕ(x,r)−1w(B(x,r))−
1
p ‖ f‖Lp(B(x,r),w),

where ‖ f‖Lp(B(x,r),w) ≡ ‖ f χB(x,r)‖Lp(G,w) .
Furthermore, by WMp,ϕ(G,w) we denote the weak generalized weighted Morrey

space of all functions f ∈WLloc
p (G,w) for which

‖ f‖WMp,ϕ (G,w) = sup
x∈G,r>0

ϕ(x,r)−1w(B(x,r))−
1
p ‖ f‖WLp(B(x,r),w) < ∞,

where WLp(B(x,r),w) denotes the weak Lp,w -space of measurable functions f for
which

‖ f‖WLp(B(x,r),w) ≡ ‖ f χB(x,r)‖WLp(G,w) = sup
t>0

t
(∫

{y∈B(x,r):| f (y)|>t}
w(y)dy

) 1
p
.

EXAMPLE 2.1. (1) If w ≡ 1, then Mp,ϕ(G,1) = Mp,ϕ(G) is the generalized
Morrey space and WMp,ϕ(G,1) = WMp,ϕ(G) is the weak generalized Morrey space.

(2) If ϕ(x,r) ≡ w(B(x,r))
κ−1

p , then Mp,ϕ(G,w) = Lp,κ(G,w) is the weighted
Morrey space and WMp,ϕ(G,w) = WLp,κ(G,w) is the weak weighted Morrey space.

(3) If ϕ(x,r) ≡ v(B(x,r))
κ
p w(B(x,r))−

1
p , then Mp,ϕ(G,w) = Lp,κ(G,v,w) is the

two weighted Morrey space.

(4) If w≡ 1 and ϕ(x,r) = r
λ−Q

p with 0 < λ < Q , then Mp,ϕ(G,w) = Lp,λ (G) is
the classical Morrey space and WMp,ϕ(G,w) = WLp,λ (G) is the weak Morrey space.

(5) If ϕ(x,r) ≡ w(B(x,r))−
1
p , then Mp,ϕ(G,w) = Lp(G,w) is the weighted

Lebesgue space and WMp,ϕ(G,w) =WLp(G,w) is the weak weighted Lebesgue space.

We use the following simplified notation later:

‖Du‖Mp,ϕ(G,w) =
m

∑
i=1

‖Xiu‖Mp,ϕ(G,w),

‖D2u‖Mp,ϕ (G,w) =
m

∑
i, j=1

‖XiXju‖Mp,ϕ (G,w) +‖X0u‖Mp,ϕ(G,w),

and generally,
‖Dku‖Mp,ϕ (G,w) = ∑‖Xji . . .Xjlu‖Mp,ϕ (G,w),

where Xji . . .Xjl is homogeneous of degree k (let us note that X0 is homogeneous of
degree two while the remaining X1, . . . ,Xm are homogeneous of degree one).
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DEFINITION 2.2. For p ∈ [1,∞) , a nonnegative integer k and a weight w , the
weighted Sobolev-Morrey space Sk,p,ϕ(G,w) consists of all Mp,ϕ(G,w) functions such
that

‖u‖Sk,p,ϕ(G,w) =
k

∑
h=0

‖Dhu‖Mp,ϕ(G,w)

is finite.
The space Sk,p,ϕ(G,w) ∩ S0

1,p(G,w) consists of all functions u ∈ Sk,p(G,w) ∩
S0

1,p(G,w) with Dhu ∈ Mp,ϕ(G,w) , and is endowed by the same norm.

REMARK 2.2. For a non-negative measurable function w defined on (0,∞) , we
denote by G p

w the set of all almost decreasing functions ϕ : G× (0,∞) → (0,∞) such
that

inf
D∈B:rB�rB0

ϕ(B) � ϕ(B0) for all B0 ∈ B

and

inf
B∈B:rB�rB0

ϕ(B)wp(B)
1
p � ϕ(B0)wp(B0)

1
p ,

where rB and rB0 denote the radius of the d -balls B and B0 , respectively.

We will use the following statement on the boundedness of the weighted Hardy
operator

Hwg(t) :=
∫ ∞

t
g(s)w(s)ds, 0 < t < ∞.

where w is a weight. The following theorem was proved in [21].

THEOREM 2.1. [21] Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) � C sup
t>0

v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ∞

t

w(s)ds
sups<τ<∞ v1(τ)

< ∞

3. Sublinear operators on generalized weighted Morrey spaces Mp,ϕ(G,w)

In this section, we shall give the boundedness of the sublinear operators Tα , α ∈
[0,Q) generated by Calderón-Zygmund operators (α = 0) and generated by fractional
integral operator (α > 0) on generalized weighted Morrey spaces Mp,ϕ(G,w) .

The following are true for the homogeneous group space [3, 40]. Let us note that
the homogeneous group is a special case of homogeneous spaces, so we can state
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LEMMA 3.1. Let 1 � p < ∞ and w ∈ Ap(G) . Then the maximal operator M and
Calderón-Zygmund operator T are bounded on Lp(G,w) for p > 1 and from L1(G,w)
to WL1(G,w) .

LEMMA 3.2. Let 1 � p < q < ∞ , w∈ Apq(G) , 0 < α < Q
p and 1

q = 1
p − α

Q . Then
the fractional integral operator Iα is bounded from Lp(G,wp) to Lq(G,wq) for p > 1
and from L1(G,w) to WLq(G,wq) .

The following theorem is valid.

THEOREM 3.1. Let 1 � p < ∞ , w ∈ Ap(G) and T0 be a sublinear operator satis-
fying condition (2.3) with α = 0 which is bounded on Lp(G,w) for p > 1 , and bounded
from L1(G,w) to WL1(G,w) . Then, for p > 1 inequality

‖T0 f‖Lp(B,w) � Cw(B)
1
p

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) w(B(x0,t))

− 1
p

dt
t

holds for any ball B = B(x0,r) and for all f ∈ Lloc
p (G,w) , where c0 � 1 is the constant

from the triangle inequality (2.1) and C does not depend on f , x0 and r > 0 .
Moreover, for p = 1 inequality

‖T0 f‖WL1(B,w) � Cw(B)
∫ ∞

2c0r
‖ f‖L1(B(x0,t),w) w(B(x0,t))−1 dt

t
, (3.1)

holds for any ball B = B(x0,r) and for all f ∈ Lloc
1 (G,w) , where C does not depend

on f , x0 and r > 0 .

Proof. Let f ∈ Lloc
p (G,w) , p ∈ (1,∞) and w ∈ Ap(G) . For arbitrary x0 ∈ G ,

set B = B(x0,r) for the ball centered at x0 and of radius r , 2c0B = B(x0,2c0r) . We
represent f as

f = f1 + f2, f1(y) = f (y)χ2c0B(y), f2(y) = f (y)χ�(2c0B)
(y), r > 0,

and for all x ∈ G we get∣∣T0 f (x)
∣∣ �

∣∣T0 f1(x)
∣∣+ ∣∣T0 f2(x)

∣∣
�

∣∣T0 f1(x)
∣∣+∫

�(2c0B)

| f (y)|
‖x◦ y−1‖Q dy. (3.2)

First we show that T0 f (x) is well-defined a.e. x and independent of the choice B
containing x .

As T0 is bounded on Lp(G,w) for p > 1 and f1 ∈ Lp(G,w) , T0 f1 is well-defined.
Next, we show that the second-term of the right-hand side (3.2) converges absolutely
for any f ∈ Lloc

p (G,w) and almost every x ∈ G .
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Observe that the inclusions x∈B , y∈ �
(2c0B) imply ‖x0◦y−1‖≈ ‖x◦y−1‖ . Then

we get

∣∣T0 f2(x)
∣∣ �

∫
�(2c0B)

| f (y)|
‖x◦ y−1‖Q dy �

∫
�(2c0B)

| f (y)|
‖x0 ◦ y−1‖Q dy.

By Fubini’s theorem we have

∫
�(2c0B)

| f (y)|
‖x0 ◦ y−1‖Q dy ≈

∫
�(2c0B)

| f (y)|
∫ ∞

‖x0◦y−1‖
dt

tQ+1 dy

≈

∫ ∞

2c0r

∫
B(x0,t)\B(x0,2c0r)

| f (y)|dy
dt

tQ+1 �
∫ ∞

2c0r

∫
B(x0,t)

| f (y)|dy
dt

tQ+1 .

Applying Hölder’s inequality, we get

|T0 f2(x)| �
∫ ∞

2c0r
‖ f‖L1(B(x0,t)) t

−Q−1dt

�
∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) ‖w−1/p‖Lp′ (B(x0,t))

dt
tQ+1

� [w]1/p
Ap

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) w(B(x0,t))−1/p dt

t
.

(3.3)

Therefore T0 f2(x) exists for all x∈B . Since G =
⋃

r>0 B(x0,r) , we obtain the existence
of T0 f (x) for a.e. x ∈ G .

From (3.2) we have

‖T0 f‖Lp(B,w) � ‖T0 f1‖Lp(B,w) +‖T0 f2‖Lp(B,w).

Since f1 ∈Lp(G,w) , T0 f1 ∈Lp(G,w) and from the boundedness of T0 in Lp(G,w)
it follows that:

‖T0 f1‖Lp(B,w) � ‖T0 f1‖Lp(G,w) � C‖ f1‖Lp(G,w) = C‖ f‖Lp(2c0B,w),

where constant C > 0 is independent of f .
Moreover, from (3.3) for all p ∈ [1,∞) inequality

‖T0 f2‖Lp(B,w) � [w]1/p
Ap

w(B)
1
p

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) w(B(x0,t))−1/p dt

t
(3.4)

is valid. Thus

‖T0 f‖Lp(B,w) � ‖ f‖Lp,w(2c0B) + [w]1/p
Ap

w(B)
1
p

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) w(B(x0,t))−1/p dt

t
.
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On the other hand,

‖ f‖Lp(2c0B,w) ≈ |B|‖ f‖Lp(2c0B,w)

∫ ∞

2c0r

dt
tQ+1

� |B|
∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w)

dt
tQ+1 (3.5)

� w(B)
1
p ‖w−1/p‖Lp′ (B)

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w)

dt
tQ+1

� w(B)
1
p

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) ‖w−1/p‖Lp′ (B(x0,t))

dt
tQ+1

� [w]1/p
Ap

w(B)
1
p

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) w(B(x0,t))−1/p dt

t
.

Thus

‖T0 f‖Lp(B,w) � [w]1/p
Ap

w(B)
1
p

∫ ∞

2c0r
‖ f‖Lp(B(x0,t),w) w(B(x0,t))−1/p dt

t
.

Let f ∈Lloc
1 (G,w) and w∈A1(G) . As T0 is bounded from L1(G,w) to WL1(G,w)

and f1 ∈ L1(G,w) , T0 f1 is well-defined. Next, we show that the second-term of the
right-hand side (3.2) converges absolutely for any f ∈ Lloc

1 (G,w) and almost every
x ∈ G .

Indeed,

|T0 f2(x)| �
∫ ∞

2c0r
‖ f‖L1(B(x0,t)) t

−Q−1dt

�
∫ ∞

2c0r
‖ f‖L1(B(x0,t),w) ‖w−1‖L∞(B(x0,t))

dt
tQ+1

� [w]A1

∫ ∞

2c0r
‖ f‖L1(B(x0,t),w) w(B(x0,t))−1 dt

t
.

(3.6)

Therefore T0 f2(x) exists for all x ∈ B and for f ∈ Lloc
1 (G,w) and w ∈ A1(G) we get

the existence of T0 f (x) for a.e. x ∈ G .
From the weak (1,1) boundedness of T0 and (3.5) it follows that:

‖T0 f1‖WL1(B,w) � ‖T0 f1‖WL1(G,w) � ‖ f1‖L1(G,w) = ‖ f‖L1(2c0B,w)

≈ |B|‖ f‖L1(2c0B,w)

∫ ∞

2c0r

dt
tQ+1 � |B|

∫ ∞

2c0r
‖ f‖L1(B(x0,t),w)

dt
tQ+1

� w(B)‖w−1‖L∞(B)

∫ ∞

2c0r
‖ f‖L1(B(x0,t),w)

dt
tQ+1

� w(B)
∫ ∞

2c0r
‖ f‖L1(B(x0,t),w) ‖w−1‖L∞(B(x0,t))

dt
tQ+1

� [w]A1 w(B)
∫ ∞

2c0r
‖ f‖L1(B(x0,t),w) w(B(x0,t))−1 dt

t
.

(3.7)

Then by (3.4) and (3.7) we get inequality (3.1). �
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THEOREM 3.2. Let 1 � p < ∞ , w ∈ Ap(G) and (ϕ1,ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x,s)w(B(x,s))
1
p

w(B(x,t))
1
p

dt
t

� Cϕ2(x,r), (3.8)

where C does not depend on x and r .
Let T0 be a sublinear operator satisfying condition (2.3) with α = 0 which is

bounded on Lp(G,w) for p > 1 , and bounded from L1(G,w) to WL1(G,w) . Then
the operator T0 is bounded from Mp,ϕ1(G,w) to Mp,ϕ2(G,w) for p > 1 and from
M1,ϕ1(G,w) to WM1,ϕ2(G,w) .

Proof. By condition (3.8), Theorems 2.1 and 3.1 with v2(r) = ϕ2(x,r)−1 , v1(r) =

ϕ1(x,r)−1w(B(x, t))−
1
p , g(r) = ‖ f‖Lp(B(x,r),w) and ω(r) = w(B(x,r))−

1
p r we have for

p > 1

‖T0 f‖Mp,ϕ2 (G,w) � sup
x∈G,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖Lp(B(x,t),w) w(B(x, t))−

1
p

dt
t

= sup
x∈Rn,r>0

ϕ1(x,r)−1w(B(x,r))−
1
p ‖ f‖Lp(B(x,r),w) = ‖ f‖Mp,ϕ1 (G,w)

and for p = 1

‖T0 f‖WM1,ϕ2
(G,w) � sup

x∈G,r>0
ϕ2(x,r)−1

∫ ∞

r
‖ f‖L1(B(x,t),w) w(B(x,t))−1 dt

t

= sup
x∈G,r>0

ϕ1(x,r)−1w(B(x,r))−1 ‖ f‖L1(B(x,r),w) = ‖ f‖M1,ϕ1
(G,w). �

COROLLARY 3.1. Let 1 � p < ∞ , w ∈ Ap(G) and (ϕ1,ϕ2) satisfy the condition
(3.8). Then the operators M , T are bounded from Mp,ϕ1(G,w) to Mp,ϕ2(G,w) for
p > 1 and from M1,ϕ1(G,w) to WM1,ϕ2(G,w) .

COROLLARY 3.2. Let 1 � p < ∞ , w ∈ Ap(G) and ϕ ∈ G p
w satisfy the con-

dition (1.5). Let T0 be a sublinear operator satisfying condition (2.3) with α = 0
which is bounded on Lp(G,w) for p > 1 , and bounded from L1(G,w) to WL1(G,w) .
Then the operator T0 is bounded on Mp,ϕ(G,w) for p > 1 and from M1,ϕ(G,w) to
WM1,ϕ(G,w) .

COROLLARY 3.3. Let 1 � p < ∞ , w ∈ Ap(G) and ϕ ∈ G p
w satisfy the condition

(1.5). Then the operators M , T are bounded on Mp,ϕ(G,w) for p > 1 and from
M1,ϕ(G,w) to WM1,ϕ (G,w) .

Note that for ϕ1(x,r) = ϕ2(x,r) ≡ w(B(x,r))
κ−1

p , from Theorem 3.2 we get the
following new result.
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COROLLARY 3.4. Let w ∈ Ap , 1 � p < Q and 0 < κ < 1 . Let T0 be a sublinear
operator satisfying condition (2.3) with α = 0 which is bounded on Lp(G,w) for p >
1 , and bounded from L1(G,w) to WL1(G,w) . Then the operator T0 is bounded on
Lp,κ(G,w) for p > 1 and from L1,κ(G,w) to WL1,κ(G,w) .

The following corollary for the operators M and T was proved in [31].

COROLLARY 3.5. Let w ∈ Ap , 1 � p < Q and 0 < κ < 1 . Then for p > 1 , the
operators M , T are bounded on Lp,κ(G,w) and for p = 1 , the operators M , T are
bounded from L1,κ(G,w) to WL1,κ(G,w) .

REMARK 3.1. Note that, in the Euclidean setting Theorems 3.1 and 3.2 were
proved in [20].

Next we state one of our main results. First we present some estimates which are
the main tools for proving our theorems, on the boundedness of the operators Tα with
α ∈ (0,Q) on the generalized weighted Morrey spaces.

THEOREM 3.3. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , and w ∈ Ap,q . Let
also Tα be a sublinear operator satisfying condition (2.3), bounded from Lp(G,wp) to
Lq(G,wq) for p > 1 , and bounded from L1(G,w) to WLq(G,wq) for p = 1 .

Then, for 1 < p < Q
α inequality

‖Tα f‖Lq(B(x,r),wq) � Cwq(B(x,r))
1
q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) w

q(B(x,t))−
1
q

dt
t

holds for any ball B(x,r) and for all f ∈ Lloc
p (G,w) , where C does not depend on f ,

x and r > 0 .
Moreover, for p = 1 inequality

‖Tα f‖WLq(B(x,r),wq) � Cwq(B(x,r))
1
q

∫ ∞

2c0r
‖ f‖L1(B(x,t),w) w

q(B(x,t))−
1
q

dt
t

, (3.9)

holds for any ball B(x,r) and for all f ∈ Lloc
1 (G,w) , where C does not depend on f ,

x and r > 0 .

Proof. Let 1 < p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , and w ∈ Ap,q(G) . For
arbitrary x ∈ G , set B = B(x,r) , 2c0B ≡ B(x,2c0r) . We represent f as

f = f1 + f2, f1(y) = f (y)χ2c0B(y), f2(y) = f (y)χ�(2c0B)
(y), r > 0,

and have
‖Tα f‖Lq(B,wq) � ‖Tα f1‖Lq(B,wq) +‖Tα f2‖Lq(B,wq).

Since f1 ∈ Lp(G,wp) , Tα f1 ∈ Lq(G,wq) and from the boundedness of Tα from
Lp(G,wp) to Lq(G,wq) it follows that:

‖Tα f1‖Lq(B,wq) � ‖Tα f1‖Lq(G,wq) � C‖ f1‖Lp(G,wp) = C‖ f‖Lp(2c0B,wp),
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where constant C > 0 is independent of f .

It is clear that z ∈ B , y ∈ �
(2c0B) implies ‖x◦ y−1‖ ≈ ‖z◦ y−1‖ . We get

|Tα f2(z)| �
∫

�(2c0B)

| f (y)|
‖x◦ y−1‖Q−α dy.

By Fubini’s theorem we have

∫
�(2c0B)

| f (y)|
‖x◦ y−1‖Q−α dy ≈

∫
�(2c0B)

| f (y)|
(∫ ∞

‖x◦y−1‖
dt

tQ+1−α

)
dy

≈

∫ ∞

2c0r

(∫
2c0r�‖x◦y−1‖<t

| f (y)|dy
) dt

tQ+1−α

�
∫ ∞

2c0r

(∫
B(x,t)

| f (y)|dy
) dt

tQ+1−α .

By applying Hölder’s inequality, we get

|Tα f2(x)| �
∫ ∞

2c0r
‖ f‖L1(B(x0,t)) t

α−Q−1dt

�
∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) ‖w−1‖Lp′ (B(x,t))

dt
tQ+1−α

�
∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) w

q(B(x,t))−
1
q

dt
t

.

(3.10)

Moreover, for all p ∈ [1,∞) inequality

‖Tα f2‖Lq(B,wq) � wq(B)
1
q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) w

q(B(x,t)−
1
q

dt
t

(3.11)

is valid. Thus

‖Tα f‖Lq(B,wq) � ‖ f‖Lp,wp(2c0B) +wq(B)
1
q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) ‖w−1‖Lp′ (B(x,t))

dt
tQ+1−α .

On the other hand,

‖ f‖Lp(2c0B,wp) ≈ |B|1− α
Q ‖ f‖Lp(2c0B,wp)

∫ ∞

2c0r

dt
tQ+1−α

� |B|1− α
Q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp)

dt
tQ+1−α (3.12)

� wq(B)
1
q ‖w−1‖Lp′ (B)

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp)

dt
tQ+1−α

� wq(B)
1
q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) ‖w−1‖Lp′ (B(x,t))

dt
tQ+1−α

� [w]Ap,q wq(B)
1
q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) w

q(B(x,t))−
1
q

dt
t

.
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Thus

‖Tα f‖Lq(B,wq) � wq(B)
1
q

∫ ∞

2c0r
‖ f‖Lp(B(x,t),wp) w

q(B(x,t))−
1
q

dt
t

.

Let p = 1. From the weak (1,q) boundedness of Tα and (3.12) it follows that:

‖Tα f1‖WLq(B,wq) � ‖T f1‖WLq(G,wq)

� ‖ f1‖L1(G,w) = ‖ f‖L1(2c0B,w)

≈ |B|1− α
Q ‖ f‖L1(2c0B,w)

∫ ∞

2c0r

dt
tQ+1−α

� |B|1− α
Q

∫ ∞

2c0r
‖ f‖L1(B(x,t),w)

dt
tQ+1−α

� wq(B)
1
q ‖w−1‖Lp′ (B)

∫ ∞

2c0r
‖ f‖L1(B(x,t),w)

dt
tQ+1−α

� wq(B)
1
q

∫ ∞

2c0r
‖ f‖L1(B(x,t),w) ‖w−1‖L∞(B(x,t))

dt
tQ+1−α

� wq(B)
1
q

∫ ∞

2c0r
‖ f‖L1(B(x,t),w) w

q(B(x,t))−
1
q

dt
t

.

(3.13)

By (3.11) and (3.13) we get inequality (3.9). �

THEOREM 3.4. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) , and
(ϕ1,ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x,s)wp(B(x,s))
1
p

wq(B(x,t))
1
q

dt
t

� Cϕ2(x,r), (3.14)

where C does not depend on x and r . Let Tα be a sublinear operator satisfying
condition (2.3) with α ∈ (0,Q) , bounded from Lp,wp(G) to Lq,wq(G) for p > 1 , and
bounded from L1,w(G) to WLq,wq(G) for p = 1 . Then the operator Tα is bounded from
Mp,ϕ1(G,wp) to Mq,ϕ2(G,wq) for p > 1 and from M1,ϕ1(G,w) to WMq,ϕ2(G,wq) for
p = 1 . Moreover, for p > 1

‖Tα f‖Mq,ϕ2 (G,wq) � ‖ f‖Mp,ϕ1 (G,wp),

and for p = 1
‖Tα f‖WMq,ϕ2 (G,wq) � ‖ f‖M1,ϕ1

(G,w).

Proof. By condition (3.8), Theorems 2.1 and 3.3 with v2(r) = ϕ2(x,r)−1 , v1(r) =

ϕ1(x,r)−1wp(B(x, t))−
1
p , g(r) = ‖ f‖Lp(B(x,r),w) and ω(r) = wq(B(x,r))−

1
q r−1 we have

for p > 1

‖Tα f‖Mq,ϕ2 (G,wq) � sup
x∈G,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖Lp(B(x,t),wp) w

q(B(x,t))−
1
q

dt
t

� sup
x∈G,r>0

ϕ1(x,r)−1wp(B(x,r))−
1
p ‖ f‖Lp(B(x,r),wp) = ‖ f‖Mp,ϕ1 (G,wp)
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and for p = 1

‖Tα f‖WMq,ϕ2 (G,wq) � sup
x∈G,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖Lp(B(x,t),w) w

q(B(x,t))−
1
q

dt
t

= sup
x∈G,r>0

ϕ1(x,r)−1w(B(x,r))−1 ‖ f‖L1(B(x,r),w) = ‖ f‖M1,ϕ1
(G,w). �

COROLLARY 3.6. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) and
(ϕ1,ϕ2) satisfy condition (3.14). Then the fractional maximal operator Mα and the
fractional integral operator Iα are bounded from Mp,ϕ1(G,wp) to Mq,ϕ2(G,wq) for
p > 1 and from M1,ϕ1(G,w) to WMq,ϕ2(G,wq) for p = 1 .

In Theorem 3.4 if take ϕ1 ≡ ϕ ∈ G p
w , ϕ2(r) = rα ϕ(r) , then we get the following

new corollary.

COROLLARY 3.7. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) and
ϕ ∈ Gp satisfy the condition ∫ ∞

r
tα−1ϕ(t)dt � Crα ϕ(r), (3.15)

where C does not depend on r . Let Tα be a sublinear operator satisfying condition
(2.3) with α ∈ (0,Q) , bounded from Lp,wp(G) to Lq,wq(G) for p > 1 , and bounded
from L1,w(G) to WLq,wq(G) for p = 1. Then the operator Tα is bounded from Mp,ϕ(G,w)
to Mq,rα ϕ(r)(G,w) for p > 1 and from M1,ϕ(G,w) to WMq,rα ϕ(r)(G,w) for p = 1 .

COROLLARY 3.8. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) and

ϕ ∈ G p
w satisfy the condition (3.15). Then the operators Mα and Iα are bounded from

Mp,ϕ(G,w) to Mq,rα ϕ(r)(G,w) for p > 1 and from M1,ϕ(G,w) to WMq,rα ϕ(r)(G,w)
for p = 1 .

For ϕ1(x,r) = ϕ2(x,r) ≡ w(B(x,r))
κ−1

p , from Theorem 3.4 we get the following
new result.

COROLLARY 3.9. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , 0 < κ < p
q and

w ∈ Ap,q(G) . Let also Tα be a sublinear operator satisfying condition (2.3) with α ∈
(0,Q) bounded from Lp(G,wp) to Lq(G,wq) for p > 1 , and bounded from L1(G,w) to
WLq(G,wq) . Then the operator Tα is bounded from Lp,κ(G,wp,wq) to Lq,κq/p(G,wq)
for p > 1 and from L1,κ(G,w,wq) to WLq,κq(G,wq) for p = 1 .

The following corollary for the operator Iα was proved in [31].

COROLLARY 3.10. [31] Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , 0 < κ < p
q

and w ∈ Ap,q(G) . Then the operators Mα and Iα are bounded from Lp,κ(G,wp,wq)
to Lq,κq/p(G,wq) for p > 1 and from L1,κ(G,w,wq) to WLq,κq(G,wq) for p = 1 .

REMARK 3.2. Note that, in the Euclidean setting of Theorems 3.3 and 3.4 were
proved in [20].
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4. Weighted Morrey inequalities

In this section, we will derive some interpolation inequalities for generalizedweigh-
ted Sobolev-Morrey norms. We recall a statement in [52]:

LEMMA 4.1. Let K ∈ C(G \ {0}) be homogeneous of degree α (α ∈ R) with
respect to the dilations (δλ )λ>0 , then there exists a constant c > 0 such that

|K(z)| � c‖z‖α ,

where c = sup
ΣN

|K(z)| , ΣN denotes the unit sphere of G .

Observe that if the integral kernel K(·) is homogeneous of degree −Q , then

T f (x) = V.P.
∫

G

K(x◦ y−1) f (y)dy

is obviously a Calderón-Zygmund operator.
Given two balls Br1 , Br2 and a function φ ∈ C∞

0 (G) , let us write Br1 ≺ φ ≺ Br2
to mean that 0 � φ(x) � 1, φ(x) ≡ 1 on Br1 and suppφ ⊆ Br2 . Now we show several
interpolation inequalities in generalized weighted Sobolev-Morrey spaces on G .

LEMMA 4.2. Let 1 < p < ∞ , w ∈ Ap(G) and ϕ satisfy the condition (1.3). Then
there exists a constant c > 0 such that for any ε > 0 and any test function u, the
following inequality holds

‖Du‖Mp,ϕ(G,w) � ε ‖D2u‖Mp,ϕ(G,w) +
c
ε
‖u‖Mp,ϕ(G,w).

Proof. From Lemma 2.1, we have

Xiu(x) =
∫

G

XiΓ(x◦ y−1)L u(y)dy =
∫

G

Γi(x◦ y−1)L u(y)dy.

Let φ be a cutoff function with B1/2(0) ≺ φ ≺ B1(0) , and split Γi as

Γi = φΓi +(1−φ)Γi = K0 +K∞,

where K0 and K∞ are all homogeneous of degree 1−Q , then

Xiu(x) =
∫
{y∈G:‖x◦y−1‖<1}

K0(x◦ y−1)L u(y)dy

+
∫
{y∈G:‖x◦y−1‖�1/2}

K∞(x◦ y−1)L u(y)dy := I + II. (4.1)

In terms of Lemma 4.1 (see, [31, pp. 1332]),

|I| �
∫
{y∈G:‖x◦y−1‖<1}

|K0(x◦ y−1)||L u(y)|dy � CML u(x), (4.2)
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where C does not depend on x .
Using Corollary 3.1, we infer that

‖I‖Mp,ϕ (G,w) � ‖ML u‖Mp,ϕ (G,w) � ‖L u‖Mp,ϕ (G,w) � ‖D2u‖Mp,ϕ (G,w). (4.3)

In terms of Lemma 4.1 (see, [31, pp. 1332]),

|II| =
∣∣∣∫

{y∈G:‖x◦y−1‖�1/2}
K̃∞(x−1 ◦ y)L u(y)dy

∣∣∣ � Mu(x). (4.4)

It follows by Lemma 3.5 that

‖II‖Mp,ϕ(G,w) � ‖Mu‖Mp,ϕ (G,w) � C‖u‖Mp,ϕ(G,w), (4.5)

where C does not depend on x .
Summing (4.3) and (4.5), we obtain

‖Du‖Mp,ϕ(G,w) � ‖D2u‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w).

A dilation argument leads to

ε‖Du‖Mp,ϕ(G,w) � ε2‖D2u‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w),

and the proof of the lemma is concluded. �

In the case of Euclidean space, the interpolation result on higher order derivatives
can be deduced by the induction. But in our context the interpolation lemma on higher
order derivatives of vector fields cannot be deduced simply from that on lower order
derivative by the induction. Now we need to use the representation formula of the
higher order derivative on homogeneous groups to arrive at our aim.

LEMMA 4.3. (See [6]) Let Q > 4 , for every integer k � 2 and any couple of left
invariant differential monomials P2k−1 and P2k−2 , homogeneous of degree 2k−1 and
2k−2 , respectively, we can determine two kernels K(1) , K(2) ∈C∞(G\{0}) which are
homogeneous of degree 1−Q and 2−Q, respectively, such that for any test function
u,

P2k−1u(x) =
(
(L ku)∗K(1)

)
(x), P2k−2u(x) =

(
(L ku)∗K(2)

)
(x),

where L k = L L . . .L︸ ︷︷ ︸
k times

.

LEMMA 4.4. Let 1 < p < ∞ , w ∈ Ap(G) and ϕ satisfy the condition (1.3). If
k � 2 is an integer, then there exists a constant c = c(Q,k) > 0 such that for every
ε > 0 and any test function u,

‖D2k−1u‖Mp,ϕ (G,w) � ε ‖D2ku‖Mp,ϕ (G,w) +
c

ε2k−1 ‖u‖Mp,ϕ(G,w).
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Proof. Suppose that φ is a cutoff function with B1/2(0)≺ φ ≺ B1(0) . By Lemma
4.3, we have

P2k−1u(x) =
(
(L ku)∗K(1)

)
(x).

Now let us split K(1) in the following way

K(1) = φK(1) + (1−φ)K(1) = K(1)
0 +K(1)

∞ ,

where K(1)
0 and K(1)

∞ are homogeneous of degree 1−Q . Thus

P2k−1u(x) =
∫
{y∈G:‖x◦y−1‖<1}

K(1)
0 (x◦ y−1)L ku(y)dy

+
∫
{y∈G:‖x◦y−1‖�1/2}

K(1)
∞ (x◦ y−1)L ku(y)dy

= I1(x)+ I2(x). (4.6)

It is easy to see with (4.2) that

|I1(x)| �
∫
{y∈G:‖x◦y−1‖<1}

|K(1)
0 (x◦ y−1)| |L ku(y)|dy � ML ku(x).

From Corollary 3.1

‖I1(·)‖Mp,ϕ (G,w) � ‖ML ku‖Mp,ϕ(G,w) � ‖L ku‖Mp,ϕ(G,w) � ‖D2ku‖Mp,ϕ(G,w). (4.7)

We have by using Lemma 4.1 and the way in (4.4) (see, [31, pp. 1333]),

|I2(x)| �
∞

∑
i=0

∫
{y∈G:2i−1�‖x◦y−1‖<2i}

|u(y)|dy
‖x◦ y−1‖Q+2k−1 � Mu(x).

Applying Lemma 3.5

‖I2(·)‖Mp,ϕ (G,w) � ‖Mu‖Mp,ϕ(G,w) � ‖u‖Mp,ϕ(G,w). (4.8)

Combining (4.7) and (4.8), we have from (4.6) that

‖D2k−1u‖Mp,ϕ(G,w) � ‖D2ku‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w).

A dilation argument shows

ε2k−1‖D2k−1u‖Mp,ϕ(G,w) � ε2k‖D2ku‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w),

and this ends the proof. �

LEMMA 4.5. Let 1 < p < ∞ , w ∈ Ap(G) and ϕ satisfy the condition (1.3). If
k � 2 is an integer, then there exists a constant c = c(Q,k) > 0 such that for every
ε > 0 and any test function u,

‖D2k−2u‖Mp,ϕ (G,w) � ε2‖D2ku‖Mp,ϕ(G,w) +
c

ε2k−2 ‖u‖Mp,ϕ(G,w).
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Proof. Let φ be a cutoff function with B1/2(0) ≺ φ ≺ B1(0) . By Lemma 4.3, we
see

P2k−2u(x) =
(
(L ku)∗K(2)

)
(x).

Split K(2) as

K(2) = φK(1) + (1−φ)K(2) = K(2)
0 +K(2)

∞ ,

where K(2)
0 and K(2)

∞ are homogeneous of degree 2−Q , then

P2k−2u(x) =
∫
{y∈G:‖x◦y−1‖<1}

K(2)
0 (x◦ y−1)L ku(y)dy

+
∫
{y∈G:‖x◦y−1‖�1/2}

K(2)
∞ (x◦ y−1)L ku(y)dy

= J1(x)+ J2(x).

Analogously to the proof of Lemma 4.4, it yields

‖J1(·)‖Mp,ϕ (G,w) � ‖ML ku‖Mp,ϕ (G,w) � ‖L ku‖Mp,ϕ(G,w) � ‖D2ku‖Mp,ϕ(G,w),

‖J2(·)‖Mp,ϕ (G,w) � ‖Mu‖Mp,ϕ(G,w) � ‖u‖Mp,ϕ(G,w).

Therefore

‖D2k−2u‖Mp,ϕ(G,w) � ‖D2ku‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w).

A dilation argument deduces

ε2k−2‖D2k−2u‖Mp,ϕ(G,w) � ε2k‖D2ku‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w).

This completes the proof. �

5. Proof of the main theorems

The following result is known, see [6, 15].

LEMMA 5.1. For some integer h with 0 < γ < Q, assume that Kγ ∈C∞(G\{0})
is homogeneous of degree γ −Q, f is an integrable function and Tγ is defined by

Tγ f = f ∗Kγ ,

Pγ is a left invariant homogeneous differential operator of degree γ , then

PγTγ f = V.P.( f ∗PγKγ )+ c f

for some constant c depending on Kγ and Pγ .
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Proof of Theorem 1.1. Let u ∈ S2,p,ϕ(G,w)∩ S0
1,p(G,w) . It holds from Lemma

2.1
XiXju(x) = V.P.

∫
G

Γi j(x◦ y−1)L u(y)dy+ ci jL u(x),

and using Corollary 3.1,

‖XiXju‖Mp,ϕ(G,w) � ‖L u‖Mp,ϕ(G,w). (5.1)

Due to a0X0u = L u−
m
∑

i, j=1
ai jXiXj , it follows that

‖X0u‖Mp,ϕ (G,w) � ‖L u‖Mp,ϕ(G,w). (5.2)

Then by (5.1) and (5.2)

‖D2u‖Mp,ϕ(G,w) � ‖L u‖Mp,ϕ (G,w). (5.3)

From Lemma 4.2, we have

‖Du‖Mp,ϕ(G,w) � ε ‖D2u‖Mp,ϕ (G,w) +
1
ε
‖u‖Mp,ϕ(G,w)

� ε ‖L u‖Mp,ϕ(G,w) +
1
ε
‖u‖Mp,ϕ(G,w). (5.4)

Combining (5.3) and (5.4), the proof is ended.

‖u‖S2,p,ϕ(G,w) = ‖u‖Mp,ϕ(G,w) +‖Du‖Mp,ϕ(G,w) +‖D2u‖Mp,ϕ (G,w)

� ‖L u‖Mp,ϕ(G,w) +‖u‖Mp,ϕ(G,w). �

Proof of Theorem 1.2. Let u ∈ S2k,p,ϕ(G,w)∩ S0
1,p(G,w) , where k is a positive

integer. In order to prove the conclusion, we need to establish the following inequality:
If k is a positive integer, there exists a constant C > 0 such that for every test function
u ,

‖D2ku‖Mp,ϕ (G,w) � C‖D2k−2L u‖Mp,ϕ (G,w). (5.5)

When k = 1, by (5.3),

‖D2u‖Mp,ϕ(G,w) � ‖L u‖Mp,ϕ (G,w). (5.6)

When k � 2, since X0 cannot be expressed as the composition of two vector fields
with homogeneity of degree 1, it follows that Dk cannot be obtained from D(Dk−1)
directly. But Pk can be written as X0P2k−2 or XiP2k−1 (i = 1, . . . ,m) , denoted by
P2P2k−2 and PP2k−1 , respectively. Furthermore, it holds from Lemma 4.3 that

P2k−1u(x) =
(
(L ku)∗K(1)

)
(x), P2k−2u(x) =

(
(L ku)∗K(2)

)
(x),

where K(1) , K(2) are homogeneous of degree 1−Q and 2−Q , respectively.
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In the case of P2k = P2P2k−2 , we have from Lemma 5.1,

P2ku(x) = V.P.
∫

G

P2K(2)(x◦ y−1)(L ku)(y)dy+ ci j(L ku)(x),

where P2K(2) is homogeneous of degree −Q . Applying Corollary 3.1,

‖P2ku‖Mp,ϕ(G,w) �
∥∥∥∫

G

P2K(2)(· ◦ y−1)(L ku)(y)dy
∥∥∥

Mp,ϕ (G,w)
+‖L ku‖Mp,ϕ (G,w)

� ‖L ku‖Mp,ϕ(G,w) � ‖D2k−2L u‖Mp,ϕ(G,w).

In the case of P2k = PP2k−1 , we obtain by using Lemma 5.1,

P2ku(x) = V.P.
∫

G

PK(1)(x◦ y−1)(L ku)(y)dy+ ci j(L ku)(x),

where PK(1) is homogeneous of degree −Q . By virtue of Corollary 3.1,

‖P2ku‖Mp,ϕ (G,w) �
∥∥∥∫

G

PK(1)(· ◦ y−1)(L ku)(y)dy
∥∥∥

Mp,ϕ (G,w)
+‖L ku‖Mp,ϕ(G,w)

� ‖L ku‖Mp,ϕ(G,w) � ‖D2k−2L u‖Mp,ϕ(G,w).

As a consequence

‖D2ku‖Mp,ϕ (G,w) � ‖D2k−2L u‖Mp,ϕ (G,w),

and (5.5) is proved.
Then

‖D2k+2u‖Lp,ϕ(G,w) � ‖D2kL u‖Lp,ϕ(G,w). (5.7)

Lemma 4.4 implies that

‖D2k+1u‖Lp,ϕ(G,w) � ε ‖D2k+2u‖Lp,ϕ(G,w) +
1

ε2k+1 ‖u‖Lp,ϕ(G,w)

� ε ‖D2kL u‖Lp,ϕ(G,w) +
1

ε2k+1 ‖u‖Lp,ϕ(G,w). (5.8)

Combining (5.7) and (5.8), we have

‖u‖S2k+2,p,ϕ(G,w) = ‖u‖Mp,ϕ(G,w) +‖D2k+1u‖Mp,ϕ (G,w) +‖D2k+2u‖Mp,ϕ(G,w)

� ‖D2kL u‖Mp,ϕ (G,w) +‖u‖Mp,ϕ(G,w) = ‖L u‖S2k,p,ϕ(G,w) +‖u‖Mp,ϕ(G,w).

Theorem 1.2 is proved. �

Proof of Theorem 1.3. From Lemma 2.1, we get

Xiu(x) =
∫

G

Γi(x◦ y−1)L u(y)dy.
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Since the function Γi(·) is homogeneous of degree 1−Q , it follows by Lemma 4.1 that

|Xiu(x)| �
∫

G

|L u(y)|
‖x◦ y−1‖Q−1 dy,

and we finish the proof by applying Corollary 3.6 with α = 1.

‖Xiu‖Mq,ϕ2 (G,w) �
∥∥∥∫

G

|L u(y)|
‖ · ◦y−1‖Q−1 dy

∥∥∥
Mq,ϕ2 (G,w)

� ‖L u‖Mp,ϕ1 (G,w), i = 1,2, . . . ,m. �
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